摘要:印染污泥是指污水处理厂在污水处理过程中产生的污泥。近年来,印染污水处理的发展增加了污水污泥的数量,因此,污泥的安全处理处置问题日益突出。
关键词:新型污泥干化;印染污泥处理;应用
前言
国内固废处理尚在发展阶段,干化焚烧联运工艺较为复杂,建设难度较高,近年来国内成功的案例不多,且含有多种重金属以及硫化物、苯系物、酚类等,散发恶臭气味,含有易燃易爆物质,在选择处理工艺时需考虑防爆问题。
1工艺流程
污水处理场产生的有机泥经污泥浓缩罐重力浓缩脱水后送至离心脱水机,脱水后的湿污泥含水率约为80% ~85% , 经过干化处理后含水率降至30%。污泥的干化是基于薄层涡轮干化技术,利用1.0 MPa 蒸汽作为热源,从干化机出来的干泥和工艺气体一起进入旋风分离器,分离后的干泥通过冷却输送机送往焚烧炉,工艺气体进入文丘里洗涤塔除尘后,由离心风机抽取并循环到闭环干化回路中。为了保持闭环干化回路微负压,与湿污泥水分蒸发量相等的一股工艺气体从闭环干化回路中抽出,经过冷凝后的臭气被送往污水处理场臭气处理系统进行处理。干化后的污泥进入回转窑中进行焚烧,回转窑的转速在0.2~1.5 r/min 间可调,污泥在850 ℃的环境下停留1.5~2.0 h,焚烧后的炉渣经水降温后外运,焚烧产生的烟气,由窑体尾部进入二燃室,烟气在1 100 ℃以上的高温条件,停留时间不小于2 s,避免二噁英产生。从二燃室出来的高温烟气进入余热锅炉,利用烟气中的余热加热除氧水生产1.0 MPa 的饱和蒸汽,换热后烟气进入经由急冷塔-布袋除尘器-湿式洗涤塔-烟气再热器等烟气处理后高空排放。
2材料和方法
2.1 实验材料和设备
铁粉取自某机械加工产生的废铁屑,经脱油处理后采用氮气保护的球磨机粉碎至100 目;污泥碳粉来自以热解法处理印染污泥制备的污泥碳粉;砂质页岩取自浙江湖州太湖周边的砂质页岩。污泥碳粉和砂质页岩分别放于105 ℃电热恒温鼓风干燥箱内干燥至恒重并粉碎至100 目。污泥碳灰分(600 ℃,有氧煅烧)及砂质页岩的化学成分组成采用X 射线荧光光谱仪(XPS,S8TIGER,德国Bruker)进行测试;污泥碳和砂质页岩的总无机碳(TIC)测试采用日本岛津TOC-5000A 总有机碳分析仪进行测定.印染废水取自浙江省湖州市诚泽水务印染废水处理厂的气浮出水。实验使用的药剂均为AR 级,药剂配制使用的水为经RO 膜反渗透处理后的水.主要试剂有:硫酸(H2SO4,ρ=1.84 g/mL;重铬酸钾(K2Cr2O7)溶液,C=0.250 mol/L;硫酸汞(HgSO4)溶液,ρ=100 g/L;酒石酸钾钠(KNaC4H6O6·4H2O),ρ=500 g/L;实验设备有DHG-9246A 电热恒温鼓风干燥箱(上海精宏实验设备有限公司);BY-600 荸荠式包衣机(长沙旭朗机械科技有限公司);YQD-06 全自动制丸机(广州市杨鹰医疗器械有限公司);RTL1500×3 三段式转动管式炉(南京博蕴通仪器科技有限公司);5B-3B(V8)多参数水质测定仪(北京连华永兴科技发展有限公司)。
2.2自制微电解反应装置
自制微电解反应装置,反应装置截面积为50 cm2,高度500 mm,5 个单独的微电解反应装置均由聚丙烯材料制成.距反应器底部10 cm 设有滤板将反应器划分为进水区与反应区,进水区设置曝气头和进水口并分别与风机和蠕动泵相连,反应区填充400 mm 高度的污泥碳微电解材料(体积为2L),每隔10 cm 设置4 个取样管,在反应区顶端设置出水口。
2.3水质及为电解材料的测试方法
CODCr 依据重铬酸盐法测试方法(GB 11914-89),采用5B-3B(V8)多参数水质测定仪(北京连华永兴科技有限公司)测定,具体测试方法为:取水样2.5 mL 于消解管中,依次加入重铬酸钾(K2Cr2O7)溶液0.7 mL,H2SO4-Ag2SO4 溶液4.8 mL,摇匀后放入消解槽内于165 ℃消解10 min,水浴冷却至室温后放入仪器进行测试。氨氮采用5B-3B(V8)多参数水质测定仪(北京连华永兴科技有限公司),按照GB 7479-87 纳氏试剂比色法进行测定,具体测试方法为:取水样10 mL 于试管中,依次加入酒石酸钾钠(KNaC4H6O6·4H2O)溶液1 mL,纳氏试剂1.5 mL,混匀放置10 min 后放入仪器进行测试。为了测试的准确性,每个样本至少重复测试三次并取平均值。
3结果与讨论
3.1 污泥碳粉和砂质页岩化学组成分析
污泥碳粉和砂质页岩的TIC 测试结果分别为化学组成XPS 测试结果和TIC 测试结果表明,砂质页岩中的SiO2(62.47%)含量远超过污泥碳粉SiO2(15.29%)含量,但其Al2O3(25.37%)的含量远低于污泥碳分中Al2O3(46.07%)含量。污泥碳中高比例Al2O3 主要来源于污水处理过程中大量使用的聚合氯化铝絮凝剂(PAC)导致的,Si 和Al 元素是陶粒骨架成分的主要组成部分。而污泥碳粉中的气态组分(主要是Fe2O3)含量接近砂质页岩所含气态组分的两倍,因此推断污泥碳粉为陶粒的成孔性能具有极大的作用并且可以起到降低陶粒堆积密度的作用。需要尤其注意的是:污泥碳粉中重金属含量高,这与印染或者染料制造过程中的催化剂、金属类染料等有直接关系。最后,污泥碳粉中无机含碳量高,这主要与诚泽水务的印染废水主要是纤维类工艺品有关.因此,相比市政污泥碳,印染和染料污泥制备的污泥碳具有碳含量高和重金属含量高的特点。
3.2 污泥碳内电解材料性能影响参数分析
采用Minitab17 软件,进行三因素五水平L25(53)的设计(见表2)以考察各因素对污泥碳微电解材料性能的影响.以印染气浮池出水CODCr 和氨氮去除率作为相应值。烧结温度为800、900、1000 ℃,反应180 min 后,污泥碳材料对印染气浮池出水CODCr 去除率分别为42.85%、50.94%、44.55%,对氨氮的去除率分别为28.05%、41.38%、30.12%。在烧结温度低于900 ℃时,污泥碳材料对印染废水CODCr 和氨氮的去除率随着温度的升高在逐渐升高,当高于900 ℃时,随着温度的升高对废水CODCr 和氨氮的去除率在逐渐降低,这可能是由于烧结温度在800 ℃时,温度偏低,材料处理过程中容易松散脱落,脱落过程导致出水色度增大,同时材料稳定性差,都会降低处理效果。在1000 ℃时温度过高,材料内部已达到熔融状态,砂质页岩和污泥碳粉中的玻璃相组分会熔化,使铁屑和污泥碳粉表面活性降低,会阻碍铁碳原电池与氨氮和有机物的接触,从而影响CODCr 和氨氮处理效果。
4 结论
结果表明,在铁含量为30%,烧结温度为900 ℃时制备新型污泥碳材料处理效果最好,对气浮废水CODCr 去除率达51.64%左右,氨氮去除率在41.78%左右。另外,通过污泥碳微电解对废水CODCr 和氨氮降解反应动力学分析,得到污泥碳材料对废水CODCr 和氨氮降解的反应分别是0.833、0.818,均符合伪一级动力学模型。
参考文献:
[1]虞向峰,王庆海,曾贤平.污泥干化技术的现状及发展方向[J].轻工科技,2016,(5):106~107
[2]陈成,司丹丹,陈清武,等.集热式太阳能污泥干化系统能效评估与适应性分析[J].广东化工,2016,43(22):60~62