摘要:19世纪70年代以后,人类开始进入二次工业革命,人类社会也开始进入电气时代,电力得到了广泛应用,并取代了蒸汽成为工业生产和社会生活的主要能源,给人类社会的生产结构和生活方式带来了巨大的改变。随着发电技术的发展,风力发电技术在我国得到了普遍应用,而风力发电过程中风力发电系统控制技术是促进风力发电技术进一步发展的重要基础和影响因素,但是,随着我国社会经济发展和人类生活对电力需求的增大,我国原有的风力发电系统控制技术已无法满足现代风力发电技术的高要求,阻碍了风力发电技术的进一步发展。
关键词:风力发电系统;工作原理;控制技术
引言
风力发电技术涉及多种力学技术以及空气动力学、材料学和机械学。有关管控风力发电的技术在当下风电行业中有着较大的研究价值。风力发电系统需要科学合理地管控好风轮,并且进一步调整风能的大小,对变换器和发电机的控制能够促进发电质量和效率的提升。本文主要研究和分析了风力发电和它的控制技术,希望能够给从事电力行业的有关人员一些帮助。
1风力发电系统的工作原理
风力发电主要是利用风能进行发电,它是新型清洁能源开发后最为重要且效果显著的发电方式。风力发电系统的组件主要包括了叶轮、发电机、变流器等。其中,叶轮的主要作用是收集风能后将其转化为机械能,然后通过风力发电系统的发电机将其转化为电能且电流为交流电;经发电机转化的交流电又通过变流器转换为与电网电压相同的交流电,最后通过变压器并入电网运行。
2常见的风力发电控制系统
2.1双馈风力发电控制系统
双馈发电系统是风力发电系统中使用最多、最为常见的一种发电系统,该系统具有性价比高的优势。双馈风力发电系统主要应用在大功率的风力发电机中。在风力发电系统中,人们对双馈风力发电系统的研究最为深入。在风力发电中该系统的应用最为成熟。随着各行业信息化、智能化的程度不断提高,双馈风力发电控制系统也逐渐发展起来,其主要控制技术有变速恒频和恒速恒频两种,主要的控制策略有以下几种:直接功率控制策略、矢量控制策略、滑模控制策略及无功优化控制策略。
2.2直驱式永磁风力发电控制系统
直驱式永磁风力发电系统由于技术原因一直没有得到很好应用,随着技术进步,近些年快速发展,在风力发电中占据了一席之地。尤其是直驱式永磁同步风力发电系统发展最快。永磁发电系统主要应用于小功率风力发电机,具有高效、简单、成本低廉等优势。直驱式永磁发电系统的控制策略主要包括转矩反馈控制、最佳叶尖速比控制、扰动观察控制和功率反馈控制几种。
3风力发电系统控制技术应用研究
(1)风力发电和电力电子变换器的控制技术:
①电力电子变换器的控制技术。从整个风力发电系统中可以发现,存在着电力电子变换器,并且电力电子变换器的特征表现在多方面:使用面较为广泛,可以有效地用于大型风力发电系统中;风能转换过程中能量的转换率较高,完成转换后具备很高的传输效率;还可以完善无功功率因素;其使用的安全性和可靠性很高。电力电子变换器的运行功率高且功率范围也很大;该设备无须花费很多成本。通过运用pwm整流器于风电系统中,能够最好地控制系统的最大功率。而运用整流器的时候,通过矢量的控制方法可以解除有功功率和无功功率之间的障碍,保证无功功率符合运行的相关要求。另外,pwm整流器还可以使有功功率的输出量最大化,设置好直流环节并调整风电系统中无功和有功功率。
②风力发电的控制技术。风力发电需要借助风力进行,这是因为风力与地面距离相差加大,这样一来,能量转化工作在空中就能完成。发电机和相关设备都需要努力提升工作效率,并且减轻物体的体重。
永磁发电机的优势在于运行效率高且损耗较小,所以被普遍运用于风力发电系统中。发电机制造还可以通过模块化方式开展,这样能减少所需花费的成本,对风力发电系统的发电机进行管控的过程中,一般都会采用矢量的控制方法,这类方法有效地解除了交轴电流与直轴电流之间的矛盾,也就使系统功率的因数控制简单化。
(2)风轮的控制技术:
①利用功率信号的反馈。利用功率信号的反馈进一步管控好风轮的功率信号,当风轮运行时,它们的功率与实际条件的改变是一致的,然后再对功率的关系作出分析,之后绘制出最大功率的曲线图,完成以上工作后接着做后面的工作。在实际操作时,还应该对比最大功率与系统中的实际输出功率,获取它们的差值大小,之后再进行风轮桨矩的调整工作,这样才有助于风轮的运行功率最大化。这种方式使成本无须花费过多,但是风机在正常运行时要获得最大功率曲线较为困难。
②管控好叶尖速比。受到风力作用的影响,风轮中风叶尖端转动时具有线速度,并且将其称为叶尖速。其中叶尖速比表示为叶尖速与这个时间之内的风速形成的比值。对叶尖速比进行控制的主要方法是控制叶尖速比值,从而进一步改善风机的运行系统。因为风速不相一致,所以很难有效地确定出最合适的叶尖速比,应该适当地改变和调节叶尖速,并调节好风轮转矩,这样才能更好地调整风轮外边缘的速度,使叶尖速比得到优化处理。
(3)现代化的控制技术。风力发电中现代化的控制技术可以分为以下几种类型:鲁棒控制技术、变结构控制技术、智能控制技术以及自适应控制技术,风力发电系统中,以变结构控制技术为主,该技术运用广泛是因为具有很快的反应力、设计较为简单、实现难度不大;处理一些多变量问题时,鲁棒控制技术可以发挥出很好的作用,具有较强稳定性的鲁棒控制技术还能有效地处理好参数不准、建模出现误差或者物质系统受影响的问题;而智能控制技术最突出的方法是模糊控制,它无须过度依赖数学模型,只需凭借专家经验就能克服一些非线性因素带来的影响。目前,一台准确的风力发电机数学模型的建成概率较小,所以对风力发电机组进行控制的过程中,可以多使用模糊控制方法。
(4)风力发电中无功功率补偿技术与谐波消除技术:
①无功功率补偿的技术。在感性元件的影响下,发电系统中一些无功功率呈现出消耗的状态,电压经过感性元件的时候,因为只是无功功率的消耗使得感性元件两边无电压变化,但是当电压较高时,经过感性元件的电流较大会给元件带来间接破坏。这时候,就要结合实际情况采取无功功率补偿技术,并且压抑住谐波作用。虽然无功功率补偿的应用很广,但还是存在一些不足。
②谐波消除的技术。风机发电的时候,由于存在谐波就是整个电能的质量不高,也给电的电压及频率造成不良影响,使无功功率与有功功率间缺乏平衡,所以一定要把存在的谐波消除掉。具体开展过程中,因为谐波会影响风能的发电,首先,它会造成发电机的铁损和铜损,在发电机内产生超同步谐振的现象;电力设备在运行时,谐波会造成设备出现热故障,影响系统的正常运行等。而消除谐波可以从以下几个方面入手:第一,使用电力变流器和一些电力设备让相应的相位与谐波进行抵消;第二,适当调整电容器组,进而改变无功功率,从而减少谐波对无功功率的影响;第三,运用三角形的连接方式,这样能减少谐波的进入量。
结语
综上所述,我国的风力发电主要有陆地风力发电和海上风力发电2类,给我国经济社会发展和人类生活提供了所需的电力。但是,由于我国的风力发电系统控制技术还存在着较大缺陷,导致我国风力发电效率较低,极大地影响了我国风力发电技术的进一步发展。所以,为了提高我国的风力发电技术,必须要加强对风力发电系统控制技术的研究。
参考文献
[1]梁佳斌.风力发电并网技术及电能质量控制对策分析[J].电工技术,2018(12):69-70.
[2]周利鹏.风力发电并网技术及电能质量控制措施探讨[J].科技创新导报,2018(36):55-56.