摘要:科学技术的发展迅速,电力能源是我国最重要的能源,广泛应用于各个行业。在生活中,由于人们经常使用电能,因此发电厂对供电和发电厂的容量承担着巨大的责任,节能降耗成为一个重要企业的指标,然而,由于诸多因素的影响,发电厂在工作过程中消耗了更多的电能,使相关电力必须采取有效的节能措施。电厂节能工作分析热能和能源技术,合理利用电厂的热能和能源技术,将最大限度地提高电厂的利用率。本文将重点分析节能降耗中热能与动力工程的实际运用。
关键词:节能降耗;热能与动力工程;实际运用
引言
能源为国家发展提供了基础性支持,其在当前发挥的作用越来越大,已然成为人们生活、生产中不能缺少的物质基础。现阶段,世界范围内虽已经积极推动清洁、可再生能源的开发与利用,但是使用能源的90%依旧为传统不可再生能源。基于这样的情况,探究、应用热能与动力工程节能技术极为必要。
1对动力系统进行优化和节能改造体现出重要性进行分析
对电厂热能应用系统做出简要的分析:热力系统表现出良好的安全稳定性,能够对整个电厂运行起到良好的促进作用,同时它也要与电厂的经济效益息息相关,所以说电厂内部的管理人员一定要对此方面的工作引起足够的重视。通过电厂热能动力系统转换分析得出,在具体的能量转换过程当中,往往是机械能和热能的有效转换,所有的热量都是来源于高温热源的产生,同时在整个的循环过程当中,能够对废气的热量进行及时的排除。当下我国大多数的电力发电厂所提供的主要热量渠道都是以矿物质燃烧为主,但是这种矿物质往往是不可再生资源的范围之内,同时在使用过程当中,及易对我们的生态环境造成不同程度的污染,所以说我们要对具体的应用方案进行不断的改进实施。
2影响电厂电能生产的因素
在实际的电厂过程中,有许多连接,如果在一个环境中出现问题,就会导致热冲击现象。重热现象主要与热能的再利用有关。当然,这种现象的产生是在电厂的过程中,因为能源的有效利用可以促进节能和环境保护,如何合理利用能源成为人们关注的问题。由于诸多因素的影响,容易产生非设计工况,这只会导致非设计工况的产生,其原因如下:一是锅炉运行的变化。由于锅炉运行不稳定,汽轮机运行没有一定规律性。锅炉运行可以实现热能的释放过程,它是改变热能的最重要手段,在一定程度上影响着发电厂的生产。其次,储能系统的不舒适性影响着系统的非设计状态。由于电能的储存不是很适当,它对电厂生产的发展有一定的影响,很容易导致供电不稳定,限制了非设计条件的实现。第三,凝结水的工作条件装置不稳定。它是发电厂生产过程中气压变化的关键仪表,即在变工况施工中,由于凝汽器工况不稳定,生产结果与预期存在一定的差距。如果设备长时间运行,没有及时保养和维修,设备的运行就会发生很大的变化。同时,如果出现性能频率问题,频率的不稳定性会降低机械设备的稳定性,这在一定程度上限制了发电厂的电力生产,影响了非设计条件。
3节能降耗中热能与动力工程的实际运用
3.1多重汽轮机重热回收
在汽轮机实际的运行过程中,重热现象的产生相对常见。而为了提升能源利用的高效性,切实达到节能减排的效果,就必须要对其实施回收利用。基于这样的情况,需要结合实际情况与现实需求增加汽轮机的数量,对汽轮机的布设进行重新规划,以此确保保障重热可以有效利用。在此过程中,依托上下级的方式展开排布分布,能够提升汽轮机热损耗的利用效率。同时,结合多重汽轮机重热回收,可以实现部分热损耗的利用率增高,进而促使热能以及动力工程在热损耗的回收利用中展开,以此达到能源利用效率、效果提升的目标。一般情况下,汽轮机最佳的重热系数稳定在0.04~0.08的范围内,这主要是由于机组之间存在的差异性素质也存在于特定范围内所造成的。
因此,在多重汽轮机重热回收无法对汽轮机的重热系数进行完全性的固化处理,只能将其设置为特定数值。
3.2废烟气的余热回收技术
锅炉排出的烟气温度高达200多摄氏度,这些余热属于二次能源,直接排放没有得到充分利用,是一种巨大的能源浪费。在“节能减排”的方针下,提高锅炉效率、减少锅炉排污、加强锅炉高温废气的充分利用是工业生产中需要注意的问题。在工业生产中,可利用锅炉运行过程中这部分烟气的余热进行热力系统循环利用,同时在锅炉尾部安装低压省煤器,在最佳取水位置与热力系统相连,充分利用锅炉烟气余热。安装低压省煤器不但可以将烟气的整体温度降下来,而且能够有效提升热能动力系统的利用率,这一方面可以在节约能源的同时提高企业的经济效益,另一方面能够减少环境污染。锅炉烟气余热回收有两种方式:预热工件和助燃预热空气。由于预热工件往往受操作场地的限制,锅炉烟气余热回收主要采用预热空气助燃,布置在加热炉上,加强锅炉的能量燃烧,充分利用资源,节能的综合效果非常显著。
3.3湿汽损失降低技术
在热能与动力工程的能量转换环节中,湿汽损失的产生极为常见,且难以避免。基于此,为了进一步降低生产中的能源损失,并获取最大的经济效益,引入相关节能技术降低湿汽损失是必然选择。笔者认为,应当从使湿气产生的不同原因入手,针对性的落实应对策略以完成湿气损失的有效减少,具体有:在设备中加设除湿装置,避免设备内部生成大量水滴;将加热循环装置引入热能传动过程中,以此减少湿汽损失;加大设备的日常维护保养力度,防止由于设备故障而引发的湿汽损失产生。湿气的产生一般是由于温度差距造成。例如,在锅炉设备中,当动叶栅结束做功后,依托余下动能,蒸汽脱离机组入至凝汽系统之中。而在这一过程中,蒸汽所存在的余下动能且机组未能及时转化的能量为“余速损失”。想要更好的实现节能、降低蒸汽损失,则要实时关注仪表状态。一旦发现压力过低、或者温度过低的状况,必须及时进行温度及压力的升高。当温度较低时,会对液态水气化产生影响,同时也会对做功效率产生阻碍,所以应对其温度予以保证。同时,还要尽可能维持做功的连续状态,并控制蒸汽的输出性稳定性,以此实现节能降耗。
3.4蒸汽凝结水回收技术
在工业生产中,大量的能源和工业用水被用来产生蒸汽热,实现工业生产过程。然而,在工业生产过程中,蒸汽完成放热过程以后所形成的凝结水通常会被浪费掉,废蒸汽冷凝水占蒸汽总热量的四分之一左右。如果这些高温冷凝水能够充分利用,不但可以降低对工业用水的使用量,而且还能够大大降低燃料能源消耗量。因为用蒸汽凝结水回收技术可以将低压蒸汽替换为蒸汽水余热,借助凝结水余热的作用来实现节能的目标。值得一提的是,压力回水以及背压回水是冷凝水回收的最主要方式。其中,背压回水主要是指借助疏水阀的背压作为主要动力,实现凝结水及水蒸汽的传输,该类回水方式能够显著提高水蒸汽的利用率,从而达到节能环保的效果。
结语
当下社会的不断进步发展,使得人们的生活水平得到了进一步的提升,因此需要电力做出良好的维持,所以我们一定要电力系统进行不断改造应用,特别是在电厂热力系统应用和节能系统应用方面进行不断改造,以此保证电厂能够发挥最大化的作用和意义,为整个的电厂的持久稳定运行提供重要的保证,此外我们还需要同国外先进的理念和技术进行不断的学习,以此能够更好满足我们的自身技术方面的缺陷,保证我们的热力应用系统运行更加安全稳定。
参考文献
[1]邱少强.浅议发电厂热能动力系统优化与节能改造[J].科技展望,2016,26(24):00290-00290.
[2]罗小荣.发电厂热能动力系统优化与节能改造分析[J].计算机产品与流通2017(11):90.