黑龙江龙煤鹤岗矿业有限责任公司立达矸石热电厂 黑龙江鹤岗 154101
摘要:能源是社会经济发展的基础,可以为社会经济发展提供较为强大的动力支持。煤炭、石油以及天然气均属于不可再生资源,这些能源在应用过程会产生不同程度的环境污染,而在排放过程中也会导致热能损耗等问题。探讨分析热能以及公立工程节能技术与手段,合理的开发利用各种新型技术手段,可以有效的节约资源,规避资源浪费等问题,继而为社会经济的持续发展奠定基础。
关键词:热能;动力工程;节能技术
1 热能与动力工程
1.1 热能装置
热能装置主要是指人们生产、生活中所需要的主要设备形式。在热能装置中能源通过燃烧释放大量的热能,之后在装置系统中将热能转化成为机械能。一般情况下,工业热能装置有以下几种:
(1)蒸汽机。蒸汽机通过燃烧燃料产生热量加热传导介质水,水达到汽化温度后产生蒸汽,蒸汽驱动活塞往复运动实现热能向机械能的转化。
(2)内燃机。燃料在气缸中被点燃,燃气膨胀直接驱动活塞往复运动,实现发动机的连续运转,实现热能向机械能的转化。相比蒸汽机,内燃机的能源的利用效率较高。
(3)蒸汽轮机、燃气轮机。高压蒸汽或燃气作用于叶片使叶轮旋转做功,适用于大功率机械的热能装置。
1.2 动力工程装置
动力工程装置与热能装置、电力动力装置共同构成工业动力系统,是工业生产中运用最广泛、最重要的设备设施。通过对动力工程装置的设计分析,提升能源的利用效率,有效降低有害气体的排放量,充分满足当前社会的环境保护发展需求。而且,优化动力工程装置设计,也可以提高煤炭、石油等不可再生资源的利用效率,将资源的损耗降到最低状态,充分满足当前动力工程产业的发展需求,实现动力工程装置运行的有效性。
2 热能与动力工程中的具体节能技术探究
2.1 调频技术
在节能降耗中,调频技术的使用更为常见,且技术简单、实用性强。在此过程中,需要重点完成以下几项任务:①结合能源的使用情况优化调频方案,避免由外界干扰引发的用电负荷变化问题发生。②在调频的过程中,着重参考工作负荷频率的变化,以此保证调速器工作状态的平衡。结合对频率调节的快速控制,能够避免的能源浪费。③在发电机组的运行中,引入自动调频与手动调频相结合的模式,合理展开二次调频处理,促使其与运行效率提升。
2.2 废热回收技术
在电能生产过程中,为了确保能量有效传递、科学转化,必然会出现一定的热能损失。因此,在节能降耗中,可以从降低损失的热能入手完成。此时,需结合实际生产情况,深入分析容量损耗现象,并引入废热回收技术,具体的流程如图1所示。
图1废热回收系统
回收余热资源后,结合热能及动力系统的实际情况,依托加热冷凝装置的使用,能够推动动力装置运行效率的提升,达到节约能源的效果,避免热量的大幅度损失。
除了废热之外,电能生产中还会形成一定的废水余热,也需要进行回收利用,最大程度的降低资源的浪费。例如,在除氧器的实际运行过程中,蒸汽的排放会造成热量与质量的损失。此时,可以在热能动力系统中引入冷却器,实现热量损失的降低。在污水排放环节中,应当实施扩容降压,以此达到对持续排放污水中的余热进行二次利用的目的;也可以使用排污热回收器将有效的锅炉污水余热进行存放。利用这样的方式,不仅能够进一步提高能源的使用效率,同时还可以实现节能环保以及节能减耗。
2.3 湿汽损失降低技术
结合上文的分析能够了解到,在热能与动力工程的能量转换环节中,湿汽损失的产生极为常见,且难以避免。基于此,为了进一步降低生产中的能源损失,并获取最大的经济效益,引入相关节能技术降低湿汽损失是必然选择。笔者认为,应当从使湿气产生的不同原因入手,针对性的落实应对策略以完成湿气损失的有效减少,具体有:在设备中加设除湿装置,避免设备内部生成大量水滴;将加热循环装置引入热能传动过程中,以此减少湿汽损失;加大设备的日常维护保养力度,防止由于设备故障而引发的湿汽损失产生。
湿气的产生一般是由于温度差距造成。例如,在锅炉设备中,当动叶栅结束做功后,依托余下动能,蒸汽脱离机组入至凝汽系统之中。而在这一过程中,蒸汽所存在的余下动能且机组未能及时转化的能量为“余速损失”。想要更好的实现节能、降低蒸汽损失,则要实时关注仪表状态。一旦发现压力过低、或者温度过低的状况,必须及时进行温度及压力的升高。当温度较低时,会对液态水气化产生影响,同时也会对做功效率产生阻碍,所以应对其温度予以保证。同时,还要尽可能维持做功的连续状态,并控制蒸汽的输出性稳定性,以此实现节能降耗。
2.4 传热实践应用技术
就当前的情况来看,热能与动力工程节能技术已然得到了我国工业领域的广泛应用。其中,传热实践应用技术就是一项较为常见的节能技术,在火电厂等工业企业的生产实践中更加常用。在该技术中,主要依托换热器完成节能。对于换热器来说,其主要将热流体的部分热量传递给冷流体的设备,在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,有着极高的应用优势。在换热器的支持下,可以促进能源利用效率的明显提升,最大程度的发挥出热能与动力工程节能技术的效果。
2.5 多重汽轮机重热回收
在汽轮机实际的运行过程中,重热现象的产生相对常见。而为了提升能源利用的高效性,切实达到节能减排的效果,就必须要对其实施回收利用。基于这样的情况,需要结合实际情况与现实需求增加汽轮机的数量,对汽轮机的布设进行重新规划,以此确保保障重热可以有效利用。在此过程中,依托上下级的方式展开排布分布,能够提升汽轮机热损耗的利用效率。同时,结合多重汽轮机重热回收,可以实现部分热损耗的利用率增高,进而促使热能以及动力工程在热损耗的回收利用中展开,以此达到能源利用效率、效果提升的目标。一般情况下,汽轮机最佳的重热系数稳定在0.04~0.08的范围内,这主要是由于机组之间存在的差异性素质也存在于特定范围内所造成的。因此,在多重汽轮机重热回收无法对汽轮机的重热系数进行完全性的固化处理,只能将其设置为特定数值。
结束语
热能与动力工程行业管理者应该充分认识到,过度消耗能源对生态环境带来的破坏性影响。结合热能与动力工程产业的特点,进行调频技术、废热回收以及新型技术的综合运用,有效改善热能与动力工程产业中能源损耗的问题,充分满足当前热能与动力工程产业的运行及发展需求。
参考文献:
[1]韩力.节能降耗在热能与动力工程中的应用与措施分析[J].当代化工研究,2018(01):179-180.
[2]赵金慧.试论热能与动力工程的应用及其对环境的影响[J].现代国企研究,2018(12):170.
[3]阮智邦.基于节能降耗理念下热能及动力工程的应用研究[J].中国新通信,2018,20(11):231.