红外测温技术在变电运维中的应用研究孟凡诺

发表时间:2020/6/8   来源:《建筑实践》2020年2月4期   作者:孟凡诺
[导读] 红外测温技术,用于平日的巡检步骤,它能辨别异常态势下的发热设备,
        摘要:红外测温技术,用于平日的巡检步骤,它能辨别异常态势下的发热设备,检测线夹状态。在不接触时,它可测得某一配件的现有发热状态。变电维修中,不可缺失这一搭配技术。它能辨别测温机理,阐释在线情形下的检修步骤,可以精准识别潜在的变电故障。未来摸索中,可以推广采用这项技术,以提升真实的运维成效。因此在本文之中,主要是针对了红外测温在变电运维技术中应用研究进行了全面的分析,并且也是在这个基础之上提出了下文当中的一些内容,希望能够给与在相同行业之中进行工作的人员提供出一定价值的参考。
关键词:红外测温;变电运维;应用;分析
1引言
        随着人们日益增长的对电能的需求,设备承电的负荷也逐渐变得越来越沉重,相较于变电运维中传统的缺陷检测技术,红外测温技术对变电设备的运行情况掌握得很及时并且准确,不仅有效地提高了效率,而且让变电设备变得更加安全与稳定,变电运维现在已经离不开红外测温技术。总而言之,我们需要不断深入地研究红外测温技术,使这门“新科技”能够接受并承担起变电运维的考验,当然,最终的目的依然是为了更好地服务于人们。
2红外测温技术浅析
2.1红外测温的适用场合
        一是电气设备的导流回路(含一次、二次),主要指回路中的触头或接头处。若这些部位存在缺陷或故障,会体现在接触电阻的明显增大上,而根据安培定律,负荷电流一定时,电阻越大所产生的热量必然越大,这样就可通过红外成像仪方便地找到异常点。二是电气设备的绝缘部分。绝缘介质虽然近似不导电,但其在运行电压的作用下,是会产生损耗热量的。而介质一旦呈现劣化趋势,其介损会显著增加,外在表现就是绝缘面的不同部分的温升产生较大梯度。三是含有铁磁材料的设备,如互感器、变压器等。正常情况下,磁回路的铁损呈现均衡弥散,但若出现漏磁、磁饱和或片间短路等异常现象,则会导致局部环流(涡流)发热,即红外辐射在空间分布发生独特变化。四是内部结构为片式的设备,如氧化锌避雷器。片式设备内部异常会导致各片之间的电压分布发生改变,并最终使泄漏电流增大,从而方便被红外测温设备探测到。综上可知,红外测温是基于“热量捕捉”的最基本原理而工作的,因此其适用绝大部分变电设备的发热故障(或隐患)的排查(除了二次设备内部)。
2.2红外测温的技术优势
        一是使用方便。红外检测仪一般为手持式,体积小、界面友好,且无需其他辅助设施,因此可以随意挪移,从各个角度对相关设备进行检查。二是真正做到不接触、远距离探测,使巡视安全性和巡视效率同时得到提高。三是可借助计算机系统,将一个时间段内的红外图像进行积累、保存,以方便分析、比对和调用。四是为变电设备状态的科学评估提供有说服力的依据,避免状态评估“拍脑袋”。
2.3红外测温的方法分类
一是温度判断法。就是通过对设备的温度普测,并结合某些经验阈值,判断设备有无明显发热现象。要点:首先适用那些“热点”不容易聚焦的设备;其次为减少日照干扰,并保证设备有较大通流,一般可在负荷晚峰时段进行。二是温差比对法。是一种横向比对法,即通过对比两台(或两相)相同设备(一般为电流型)的两个对应测点之间的温差,判断其中有无故障设备或故障相。运用这种方法,可以不需要选择负荷高峰时段来进行,但需“有的放矢”,即要预先确定待检部位,如隔离开关触头、引流线等接触电阻可能会发生变化的地方。
3红外测温技术在变电运维应用技术分析
3.1技术细分
        在对电力设备进行温度检测时,首先,要辨别现有温度,普遍测得现有温度,然后再结合巡视过程中测得的阈值来判断设备的发热和运行状态。由于该技术在部分难以聚焦的变电配件存在应用困难,为了减少干扰,确保电力系统架构体系中具有足够电流,该测验技术通常应用在晚高峰时段;其次,对比温度的测量结果。

根据横向对比,测得对应的断点温差,并以此为基础判断设备存在的弊端和漏洞。采用这种方式,能够有效规避用电高峰,但是在测量之前要首先明晰待测设备的配件部分,如隔离触头、引流线等,这是由于这些配件的固有电阻可能发生变化;最后,纵向对比辨别。红外测温技术获得不同运行阶段设备的红外图谱,通过分析对比图谱明确配件的发热倾向,探究配件存在的缺陷。要采用这种方式,必须实现构建历程图谱,便于对比,因此针对于这个方面的内容而言必须要能够引起足够的重视。
3.2用于检修状态
变电检测目前通常采用状态检修,状态检修具有灵活性,不仅能提高工作效率,缩短工作时间,还能减轻断电干扰,然而这都必须首先辨别等待测查设备的配件状态。由于通常运行的变电配件都带有电荷,很难有效了解设备的内部状态,因此状态判断和获取的信息存在紧密的关系。初始检测时,间接信息通常涵盖在成套自动装置内,通过查验故障记录,也能发现缺陷。但是这种方式也存在一定缺陷,如在线测查必须要配置较多的弱、强电设备;考量设备的绝缘状态,也很难进行精确的匹配。即便上述这些缺陷都能克服,后续的关联修护也存在很多的问题,如记录的缺陷只能代表一段时间的状态,难以预测下段时间设备的异常走向,而红外测温技术恰好解决了这一难题。同时测温技术的图谱也能及时识别各个时段的运维状态,为设备运行状态判断提供辅助参照。
3.3排除常见事故
        随着人们对电能需求的增加,负荷逐步增加,给变电体系带来了极大的负担,红外测温技术操作过程中的故障筛查,关联着电力设备查验的成效、故障识别的速率,通过对这些信息的综合分析研究,采取纵向和横向的温差比较,能够及时判断设备的故障。
4红外测温技术在变电运维的具体应用
4.1对电流致热性缺陷的检测
电力设备种类繁多,再加上不同类型设备的构造、制热因素和运行条件不同,因此检测和缺陷判断的方法也存在差异。电流致热型设备发热的原因通常有下述几种:接头、触头连接不良;导线截流面积不够等,这类设备缺陷检测的特点有:第一,致热部位裸露,能够使用热像仪直接测量温度;第二,测量值和实际值差异相对较小。通常可根据测量获得温度,按照相关标准中规定的温升局限值和红外测温技术中的相对温差法来判断设备异常现象的严重程度,一旦温度超过某个固定值,要及时进行维修处理。
4.2对电压致热性缺陷的检测
        电压致热型故障通常是由于设备内部绝缘出现异常、电压分布异常及电流泄露过大导致设备出现异常。致热型故障通常由电压造成,和电流没有直接关系,主要特点有:一是设备内部绝缘介质由于老化、受潮等原因发生异常;二是发生故障后电压分布出现异常,导致设备出现异常的特征性热分布;三是绝缘子由于劣化、污秽等原因造成电压和泄露电流发生异常,从而导致设备出现过热或变凉;四是电路中绝缘子绝缘性能好、坏部位交合处出现发热。对于这种设备出现的异常发热判断,一般采用同类比较法和温升值的异常状况来判断,如果同类温差数值大于规定值的30%,就可判断设备出现重大缺陷,因此针对于这个方面的内容来说必须要能够引起足够的重视。
5结论
        通过对上述的内容进行分析研究之后可以得出,总而言之,红外线测温技术在变电运维检修中的应用是广泛的,在隔离开关、线夹、状态检修、电压致热性缺陷等方面都可以采用红外线测温技术,不仅能提高运维检修工作水平,还能提高故障分析的精确度。
参考文献:
[1]吴敏.变电运维中红外测温技术的应用研究[J].中国新技术新产品,2017,(15):26-27.
[2]郭世繁.红外测温技术在变电运维专业中的应用研究[J].建材与装饰,2017,(09):238-239.
[3]王靖宇.红外测温技术在变电运维工作中的应用研究[D].天津大学,2016.
[4]王瑾瑜.红外测温技术在变电运维中的应用研究[J].企业技术开发,2016,35(06):37-38.
[5]徐建忠,杨政.红外测温技术在变电运维中的应用[J].中国高新技术企业,2015,(28):67-68.
[6]陈海.红外测温技术在变电运维中的应用[J].科技广场,2014,(08):65-68.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: