风电场风力发电机的运行维护措施

发表时间:2020/6/30   来源:《电力设备》2020年第6期   作者:高华
[导读] 摘要:风力发电机的运行原理就是将风能转化为机械能,然后机械能会带动风力发电机的转子旋转,从而得到电能。
        (明阳智慧能源集团股份公司  广东省中山  528437)
        摘要:风力发电机的运行原理就是将风能转化为机械能,然后机械能会带动风力发电机的转子旋转,从而得到电能。风力发电机类型有很多,可以分为异步型、同步型、水平轴型以及垂直型四个类型。本文就风电场风力发电机的运行维护及状态监测和故障诊断技术的应用进行了探讨。
        关键词:风电场;风力发电机;运行维护;状态监测;故障诊断
        前言
        风能作为可再生能源,利用风能进行发电不但能够降低对资源的消耗,缓解我国资源紧张问题,而且可大大减少对环境造成的污染,为推动我国能源消费结构也作出了巨大的贡献。风力发电机是进行风能发电的核心设备,主要是将动能转化为机械能,然后再将机械能转换为电能。这一系列的过程需要通过发电机组内部所有元部件的共同配合完成,但是由于风电场一般都位于比较偏远的地区,发电机在运行过程中受环境影响较大,一旦发生故障,将会造成严重的经济损失。
        1风电场电气设备中风力发电机的运行维护措施
        1.1故障处理措施
        1.1.1—发电机叶片故障的处理措施
        发电机叶片故障一旦发生,机组就要停止运行风力发电机,然后迅速的进行发电机叶片的故障排除工作。如果没能有效排除发电机叶片故障,就要进行具体的风力发电机叶片的更换,进一步消除发电机叶片故障问题。但是这样风力发电厂的经济成本就会大幅度的提升。
        1.1.2—风力发电机变流器运行异常的处理措施
        通过定期维修能够及时发现发电机存在的变流器运行故障,进而采取恰当的方法进行处理。由于风力发电机变流器运行异常的原因主要有散热不均,因此可对局部过热现象进行关注,对冷却风扇进行清洁、吹灰、打机油等维护保养工作。
        1.1.3—发电机振动异常的处理措施
        在进行风力发电过程中,出现了异常振动噪声,那么其识别和消除振动噪声的位置不容忽视,应予以重视。如果传输系统出现了故障,那么应对温度和振动等情况进行相应的检查,防止问题的发生,并对已出现的故障进行及时处理,确保风力发电正常,满足相应的要求。
        1.2运行维护措施
        1.2.1—完善风力发电机运行维护检查工作系统风力发电机工作人员一定要严格的按照发电机运行维护检查工作系统来做好相对应的设备维护工作,一定摆脱被动的维护检查工作,转变为主动的维护检查。做好定期的系统维护检查工作,以维持风力发电机的稳定运行状态[3]。
        1.2.2—制定完善的检修流程
        由于风力发电机中各个部件使用年限并不相同,而特定时间内各个部件也会出现不同的故障问题。基于此,相关的工作人员就要制定每一个部件的检修流程,严格按照相应的流程进行其维修工作,同时也要针对设备的检修项目、结果,做好相关的记录,以便后期工作人员查阅。
        1.2.3—制定完善的维护计划
        工作人员一定要科学制定并完善其风力发电机的维护计划,如可以定期检查螺旋力矩间的距离,达成有效连接风力发电机中各个零部件目的。而针对齿轮和齿轮间的切合转动,就要借助润滑油来做好维护工作。


        1.2.4—提高维护人员的技术水平
        风力发电机的检修工作质量以及速度程度性的取决于维修人员的专业水平以及操作技能,因此需要不断的开展有关培训活动,以提升维护人员的维修技术。
        2状态监测和故障诊断技术在风力发电机中的应用
        2.1齿轮箱状态监测和故障诊断
        齿轮箱作为风力发电机中连接主轴和发电机的重要部件,其内部结构和受力情况比较复杂,尤其是在运行工况和载荷发生变化的情况下,发生故障的几率会有所增加。由于齿轮箱故障而导致风力发电机故障的占比较大,不仅维修成本高,且因为停机所造成的发电量损失巨大,所以对齿轮箱进行状态监测和故障诊断非常重要。齿轮和轴承是齿轮箱比较常见的故障部位,断齿、齿面疲劳、胶合是齿轮常见故障类型,磨损、点蚀、裂纹、表面剥落是轴承常见故障类型,任何一种故障类型都会影响到齿轮箱的正常运转。随着风力发电机规模的扩大,对齿轮箱的性能要求也越来越高,所以要保证齿轮箱的安全可靠运行。振动监测和温度监测在齿轮箱状态监测中比较常用,振动监测主要是利用振动测量仪器对齿轮箱的振动频率进行检测纪录,然后将测得的实际运行数据与设计数据进行对比分析,从而发现齿轮箱中各部件的运行状态。故障特征频率是判断齿轮和轴承健康状态的重要指标,所以通过时域信号统计能够初步诊断出齿轮箱故障点及原因,然后再利用快速傅里叶变换和功率谱对初步诊断的结果进行再次确认。温度测量法主要是通过温度传感器对齿轮箱零部件运行过程中的温度变化进行识别和诊断,通过与常态进行对比,能够及时获知齿轮箱零部件的状态信息。
        2.2叶片状态监测和故障诊断
        叶片在风力发电机中主要是吸收风能,长期处于露天环境下,对叶片造成的损伤较大。叶片长度一般在30~40m,所以在运行过程中出现的颤振会导致叶片出现疲劳裂纹,如果在近海地区还会受到海水湿气的腐蚀,阵风和雷击也是影响叶片运行安全的重要因素。为了保证叶片运行的安全性,对叶片的材料、质量和体积都有严格的要求。一旦叶片发生故障,不仅会造成叶片本身的损坏,还会威胁到整机运行的安全性。对叶片的状态监测和故障诊断主要是通过应力应变测量来实现,但是受到叶片材料以及运行环境的影响,对应力应变传感器有一定的要求。光纤光栅传感器因为具有较好的抗电磁干扰、抗腐蚀、尺寸小、寿命长等优点,比较适用于叶片的应力应变检测,在预测叶片使用寿命中具有重要作用。为了弥补光纤光栅传感器的不足,还可将声发射检测和红外成像检测结合运用。利用声发射检测能够检测出叶片因与空气冲击导致的内部应力集中断裂以及变形时释放的应力波,以此来判断叶片健康状况。红外成像检测技术可对叶片表面裂纹、剥落等呈现的热辐射能量分布状态来识别叶片的健康状态。
        2.3发电机状态监测和故障诊断
        发电机是风力发电机中的核心部件,其主要功能是将机械能转换为电能。由于发电机长期处于工况变化以及电磁环境中,且由于机组规模的扩大对发电机的密封保护增加一定的难度,所以经常会出现振动过大、发电机过热、轴承过热、转子/定子线圈短路等故障,其中轴承故障、定子故障及转子故障占据较大比例。对于发电机的状态监测和故障诊断主要是对转子/定子电流信号、电压信号以及输出功率信号进行状态监测,通过对电流信号的时域分析获取幅值数据信息,然后经过谐波分量的变化来判断发电机故障类型。比如对转子偏心故障的识别中,通过输出电流、电压、功率等信号的获取,能够判断出是轴承过度磨损还是其他故障类型。
        结束语
        对发电机进行的状态监测能够比较全面而详细地获取发电机运行过程中的各项数据,在对这些数据进行分析整理后,可有针对性的进行优化设计,并且做好各项防范措施,减少发电机发生故障的几率,提高风力发电的效率和质量。
        参考文献:
        [1]赵铁印.双馈式风力发电机组发电机滚动轴承状态监测及故障诊断方法的分析[J].科技风,2018(19):195.
        [2]吴艳标.风力发电机状态监测和故障诊断技术的研究[J].城市建设理论研究(电子版),2018(07).
        [3]绳晓玲.叶轮不平衡故障下双馈风力发电机运行特性分析及控制研究[D].北京:华北电力大学,2017.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: