(大唐集团内蒙古分公司赤峰事业部 内蒙古赤峰 024000)
摘要:社会快速发展的今天,逐渐加大了能源的消耗量,不仅降低我国能源储备量,不利于长远发展,而且还对环境造成较大破坏,因而需要开发出更多新型的无污染能源。这一背景下,我国开始对风力发现进行了研究,并取得了不错的效果。所以,本文就风电新能源的发展现状及其并网技术进行了研究,仅供参考。
关键词:风电;新能源;并网技术
当今人类生存和发展急需解决的是能源和环境问题。进入21世纪以来,世界各国为了保证各自的能源安全并应对气候变化,纷纷调整能源战略,加大可再生能源的开发和建设力度,尤其是风能的开发和利用。风力发电作为一种可再生的绿色能源,以其无污染、储量丰富、成本低廉、使用前景广阔的优势倍受世界各国的重视。我国由于海域面积辽阔,风能储量很大且分布较广,开发潜力很大。近年来,在能源和环境危机日趋紧迫的情况下,我国政府实施了一系列新的能源战略,对能源结构进行了调整,风电产业及技术水平得到了飞速发展,但在风电并网技术方面还存在一些问题,总结并分析如何解决这些问题,对深入推进风电产业的健康、可持续发展意义非凡。
一、风电发展现状
在我国,很早就对风电产生了重视程度,并逐渐扩大风电的应用规模,据相关部门统计,截止到2019年上半年,我国风电容量为193GW,与6年前的77.2GW相比,将近提增长了两倍,其中在2019年上半年,新装机容量为20GB。从发电量的角度来说,风电发电量也在迅猛增长,在2019年上半年,风力发电总量为21445亿kWh,与同期相比,增长了11.5%;而全国平均风电利用小时数为1133h,与同期相比,降低了10h。从分布的角度来说,内蒙古风电容量最高,为2896MW,占我国总容量的15%左右,其次为新疆,风电容量为1926MW,而其他地区的风电装机容量相对较少一起,其中,处于沿海城市的浙江与上海,风电装机容量只有157MW与71MW。
二、风电并网对整个电网的影响
虽然风电具有污染小,可再生的特点,但将其接入到电网后,将会对整个电网造成一定影响,具体来说,主要包括以下几个方面:(1)降低电能质量。以往阶段,风电装机容量较低,且通过异步发电机的方式,将其接入到配电网内,虽然这样接入较为方便,且成本较低,但由于设备性能较差,很容易受到外界冲击,因而很容易产生一些不良现象,如谐波污染等,降低了电能的质量。(2)风电场运行时,会利用一定的无功功率,而将其接入到电网后,由于容量的增加,导致无功功率缺失,进而使电压产生波动。(3)对于风电来说,存在不稳定的特点,受到这一特点的影响,导致其失去出力时,将会导致电网频率降低,风电占比越高,这一现象更加显著。(4)风电的接入,对以往电网产生了较大的变化,为了确保整个电网顺利运行,电力单位应重新对其进行规划。
三、风电新能源的特点
风力发电是在风力发电机及其控制系统的作用下,将风能产生的机械能在完成一系列控制操作后转化为电能的过程。风能发电的特点在于风能是可再生的,发电过程中不会释放废气造成污染,具有节能环保且造价低的优点,但也存在一些不易控制的因素,具体如下。
1.风能具有不稳定性
风能是一种间断性能源,风速和风向随季节和气候的变化而发生变化,致使风能具有随机性和间歇性,这些不稳定的特点决定了风力发电机很难调控出力大小的均匀度,因此,风电机组发出的电能也是波动的、随时变化的。
2.风能的密度稀疏,风能发电不方便
大量储存风力发电机的风轮尺寸只有做到足够大,才可以取得与其他发电设备相同的发电容量。
风力发电系统储存电能的成本很高,远大于其发电的成本,因此,整个风电系统中几乎没有蓄电的能力,一般是通过调节收纳电量来完成输电,所以风能发电输出电量的大小是不均衡的,对并网的技术提出巨大挑战。
3.风电场分布位置偏远
我国风资源丰富的区域一般在沿海地区,居住人口稀少,距离用电负荷中心较远,加之当地电网架设结构薄弱,风电外送受到一定制约,急需加强电网建设,这使国家的电网建设及传输都面临考验。此外,风能的不可控性导致风能发电的电网具有不可调度性,这些不稳定因素造成的结果就是:风电场容量在整个电力系统中的占比是引起电网稳定性的决定因素,即占比越大,电网稳定性越差。
四、风电并网技术的优化措施
1.风电功率评估
对风电进行转化时,需要采用很对并网技术,其中,最主要的是对风力发电量进行评估。随着我国风电事业的不断发展,社会各界逐渐对风电进行了大量研究,通过这些研究可以发现,可以利用天气预报的信息,构建出不同的分析模型,将这些模型组合到一起之后,计算出相对较为精确的结论。首先,在该技术当中,主要应用了天气遇到的分析信息,由于我国天气预报技术较为完善,使得其采集到的天气信息较为准确,为风力发电以及并网提供了良好支持。其次,通过对风电设备周边信息的采集,准确掌握风电场所的具体情况,并以此为基础,确定出轮毂的风向,以及风力的流动速度。最后,利用上述得到的结果,可绘制出相应的功率曲线,从而推导出风机的实际功率。通过这一技术的应用,能够为风机的选择提供重要帮助,从根本上改善了预测不准确的问题,极大程度上提升了预测的精确度。
2.无功补偿方式
通过大量时间研究表明,在风电并网时,存在很多问题,其中,最为常见的是电压稳定性较低,而导致这一问题出现的主要原因则是风电设备运行过程中,需要一定的无功功率表,特别是异步发电机,这一问题更加显著。所以,想要使电网更加良好的运行,应采取科学、合理的无功补偿方式,具体来说,可以从以下几个方面着手:(1)在现有风电系统内,安装动态无功补偿装置,如SVC补偿器等,通过这类设备的使用,优化风电的暂态性能,增加风电场的最高容量。确定SVC容量时,不仅要考虑SVC的调节性,同时还要集合风电场的容量,关注电网的内部结构等。(2)改进电网结果,或者是提高符合功率,也会增加风电容量,并优化风电暂态性能。(3)对风电系统进行检查,确保其无故障之后,将低电压的部分隔离,使得整个风电系统运行时,能够一直采用最佳的控制方式。但需要注意的是,若隔离部分较多时,应分析电网调控性能,确保低电压部分隔离的同时,不会对调节功能造成较大的应用,使电网可以安全、稳定的运行。
3.对大容量风电系统的研发
目前,我国缺乏对大容量风电系统的研发。随着国家对风电能源的大规模开发,风电机组单机装机容量不断增大,在此要求下,相关部件和控制子系统的设计难度也越来越大,研发大容量、高性能和可靠稳定的风力发电机成为当务之急。如何突破这一瓶颈,研发出新的控制、设计技术是目前世界风力发电领域面临的技术难题,因此,大容量风电系统的研发是未来风电系统的重要发展方向。
结语
面对当前能源紧缺、环境污染严重的局面,风电建设步伐逐渐加快,电网中风电场容量的比例将会越来越大,这将会给电网的稳定运行带来很大的影响。所以,为了使风电更好地接入到电网当中,应采取科学的方式对风电功率进行评估,并通过合理的手段向风电系统提供无功功率,以推动社会更好地发展。
参考文献:
[1]迟永宁,张占奎,李琰,等.大规模风电并网技术问题及标准发展[J].华北电力技术,2017,11(03):59.
[2]高垚.海上风电输电与并网关键技术研究[J].河南科技,2018,10(19):139-140.
[3]王秀丽,赵勃扬,黄明煌,等.大规模深远海风电送出方式比较及集成设计关键技术研究[J].全球能源互联网,2019,09(02):44-51