风力发电机组状态监测和故障诊断技术研究 孙博霖

发表时间:2020/7/21   来源:《电力设备》2020年第9期   作者:孙博霖
[导读] 摘要:风能作为可再生能源,利用风能进行发电不但能够降低对资源的消耗,缓解我国资源紧张问题,而且可大大减少对环境造成的污染,为推动我国能源消费结构也作出了巨大的贡献。
        (镶黄旗大唐国际新能源有限责任公司  内蒙古锡林浩特  026000)
        摘要:风能作为可再生能源,利用风能进行发电不但能够降低对资源的消耗,缓解我国资源紧张问题,而且可大大减少对环境造成的污染,为推动我国能源消费结构也作出了巨大的贡献。风力发电机是进行风能发电的核心设备,主要是将动能转化为机械能,然后再将机械能转换为电能。这一系列的过程需要通过发电机组内部所有元部件的共同配合完成,但是由于风电场一般都位于比较偏远的地区,发电机在运行过程中受环境影响较大,一旦发生故障,将会造成严重的经济损失。所以需要加强对风力发电机的故障预防工作,通过对发电机进行状态监测可以实时掌握发电机的运行状态,并且通过对状态监测获取的数据进行分析,能够为故障诊断提供有力的参考依据,既能够有效避免故障的发生,又能够缩短故障维修的时间,提高维修效率。
        关键词:风力发电;状态监测;故障诊断技术
        1 风力发电机采用状态监测和故障诊断技术的必要性
        风力发电机状态监测和故障诊断技术主要是利用计算机控制系统,将信号采集、在线监测和信号分析综合运用的系统。状态监测技术主要有油液监测、振动监测、温度监测、应变力监测,利用安装在风力发电机中的检测设备进行信号的收集,然后通过对信号的处理、分析、判断和诊断,就能够及时获取发电机的运行状态,进而通过控制中心对发电机的运行状态进行调整,可有效预防故障的发生。油液监测技术主要是通过对润滑油和液压油的性能进行分析,以此来掌握设备的润滑及磨损状态。振动监测主要是通过振动信号的收集来分析风力发电机的机械故障,比如转子不平衡,转轴弯曲等。温度监测主要是通过温度传感器获取设备的运行温度,常用于电子和电气元件的故障诊断,能够比较直观的反应设备的运行状态。应变力监测主要是通过应变力传感器来获取信息,主要用于叶片寿命的预测和疲劳状况的监测。状态监测和故障诊断技术能够对风力发电机进行远程监控和诊断,通过对各项数据信息的收集整理,能够实时监控风力发电机各个部件的运行状态,可有效遏制安全事故的发生,提高风力发电机运行的稳定性和可靠性。
        2 状态监测和故障诊断技术在风力发电机中的应用
        2.1 齿轮箱状态监测和故障诊断
        齿轮箱作为风力发电机中连接主轴和发电机的重要部件,其内部结构和受力情况比较复杂,尤其是在运行工况和载荷发生变化的情况下,发生故障的几率会有所增加。由于齿轮箱故障而导致风力发电机故障的占比较大,不仅维修成本高,且因为停机所造成的发电量损失巨大,所以对齿轮箱进行状态监测和故障诊断非常重要。齿轮和轴承是齿轮箱比较常见的故障部位,断齿、齿面疲劳、胶合是齿轮常见故障类型,磨损、点蚀、裂纹、表面剥落是轴承常见故障类型,任何一种故障类型都会影响到齿轮箱的正常运转。随着风力发电机规模的扩大,对齿轮箱的性能要求也越来越高,所以要保证齿轮箱的安全可靠运行。振动监测和温度监测在齿轮箱状态监测中比较常用,振动监测主要是利用振动测量仪器对齿轮箱的振动频率进行检测纪录,然后将测得的实际运行数据与设计数据进行对比分析,从而发现齿轮箱中各部件的运行状态。故障特征频率是判断齿轮和轴承健康状态的重要指标,所以通过时域信号统计能够初步诊断出齿轮箱故障点及原因,然后再利用快速傅里叶变换和功率谱对初步诊断的结果进行再次确认。

温度测量法主要是通过温度传感器对齿轮箱零部件运行过程中的温度变化进行识别和诊断,通过与常态进行对比,能够及时获知齿轮箱零部件的状态信息。
        2.2 叶片状态监测和故障诊断
        叶片在风力发电机中主要是吸收风能,长期处于露天环境下,对叶片造成的损伤较大。叶片长度一般在30~40m,所以在运行过程中出现的颤振会导致叶片出现疲劳裂纹,如果在近海地区还会受到海水湿气的腐蚀,阵风和雷击也是影响叶片运行安全的重要因素。为了保证叶片运行的安全性,对叶片的材料、质量和体积都有严格的要求。一旦叶片发生故障,不仅会造成叶片本身的损坏,还会威胁到整机运行的安全性。对叶片的状态监测和故障诊断主要是通过应力应变测量来实现,但是受到叶片材料以及运行环境的影响,对应力应变传感器有一定的要求。光纤光栅传感器因为具有较好的抗电磁干扰、抗腐蚀、尺寸小、寿命长等优点,比较适用于叶片的应力应变检测,在预测叶片使用寿命中具有重要作用。为了弥补光纤光栅传感器的不足,还可将声发射检测和红外成像检测结合运用。利用声发射检测能够检测出叶片因与空气冲击导致的内部应力集中断裂以及变形时释放的应力波,以此来判断叶片健康状况。红外成像检测技术可对叶片表面裂纹、剥落等呈现的热辐射能量分布状态来识别叶片的健康状态。
        2.3 发电机状态监测和故障诊断
        发电机是风力发电机中的核心部件,其主要功能是将机械能转换为电能。由于发电机长期处于工况变化以及电磁环境中,且由于机组规模的扩大对发电机的密封保护增加一定的难度,所以经常会出现振动过大、发电机过热、轴承过热、转子/定子线圈短路等故障,其中轴承故障、定子故障及转子故障占据较大比例。对于发电机的状态监测和故障诊断主要是对转子/定子电流信号、电压信号以及输出功率信号进行状态监测,通过对电流信号的时域分析获取幅值数据信息,然后经过谐波分量的变化来判断发电机故障类型。比如对转子偏心故障的识别中,通过输出电流、电压、功率等信号的获取,能够判断出是轴承过度磨损还是其他故障类型。
        3 结束语
        因为风力发电机的组件检修较为繁琐,加之运行环境比较恶劣,所以为发电机维修增加一定的困难。计划检修和停机检修是发电机维护的主要手段,但却会提高维修成本,并且会因为拆装等环节增加不必要的故障隐患。为了提高发电机运行的可靠性和稳定性,利用状态监测和故障诊断技术可有效监测出传动系统和发电机系统的内部故障,减少因为非计划停机和定期维修等产生的维修成本。同时通过对发电机进行的状态监测能够比较全面而详细地获取发电机运行过程中的各项数据,在对这些数据进行分析整理后,可有针对性的进行优化设计,并且做好各项防范措施,减少发电机发生故障的几率,提高风力发电的效率和质量。
        参考文献
        [1]赵铁印.双馈式风力发电机组发电机滚动轴承状态监测及故障诊断方法的分析[J].科技风,2018(19):195.
        [2]吴艳标.风力发电机状态监测和故障诊断技术的研究[J].城市建设理论研究(电子版),2018(07):1.
        [3]赵勇,韩斌,房刚利.风力发电机状态监测与故障诊断技术综述[J].热力发电,2016,45(10):1-5.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: