摘要:目前,人口数量不断增加,全球气候变化形势日益严峻,能源问题越来越受到人们的关注。智能电网具有坚固、顽强、较强自愈能力、较强实用性和较高经济性的特点,有助于实现电网的长久发展,所以逐渐引起人们的关注。智能电网建设过程中,运用电力工程技术能够节约资源,提升智能电网的稳定性,提高智能电网的建设速度和质量。因此,本文针对智能电网建设过程中电力工程技术的应用展开论述。
关键词:电网建设;智能电网;电力工程技术
前言
现今是智能计算机和信息互联网时代,在供电需求与日俱增和对供电可靠性要求越来越高的用电形势下,传统的电网技术已经不能满足电网发展的时代要求,我们必须加大推进智能电网建设力度。由于智能电网在建设过程中,具有信息化、自动化的特点,这对电力技术的应用也提出了新的要求。
1智能电网的简单介绍
智能电网技术是将信息技术、智能计算技术、自动化技术、电网技术融合起来的一种新型技术,是高科技时代不断发展的产物,按照使用组网技术的不同可以分为广域智能电网和局域智能电网。广域智能电网是指将电力通信网络与民用互联网相结合,而局域智能电网是指专门为电力通信组建各种局域网络,并用网线把它们相互连接起来。智能电网具有自动化高、有自我诊断修复功能、可靠性高、维护方便等特点。在整个电网的发电、输送电力、变电过程中都能表现出高度的智能性,通过智能电网不断地发展和完善,电网系统发展也会得到质的飞跃。
2智能电网建设的作用
(1)从环保的角度智能电网的建设具有重要意义。资源的日益枯竭要求对各项资源都能够充分利用,并在利用的过程中尽量减少对环境的污染与不利影响,应运而生的智能电网能够实现电网的各项资源得到充分有效的配置和利用,进一步实现对环境的保护作用和资源的节约。
(2)智能电网的建设要求提高了网架的结构强度。基于智能电网的建设要求,网架结构强度需要达到一定要求才能够过关,这就会提高网架质量要求和生产水平,才能够保证智能电网的建设质量,进一步保证智能电网的运行安全。
(3)利用智能电网的建设合理配置资源。对于资源的合理利用也是绿色节能可持续发展的一项要求,而智能电网恰恰能够实现这一需求。智能电网的建设通过对各项资源的合理配置,减少不必要的浪费从而能够最大程度实现电网系统的高效工作。
(4)智能电网的建设能够让自动化技术得到全面的应用。对于那些没有采用自动化技术的电网系统来讲,一旦出现系统故障时,控制系统不能自行诊断,并将故障反馈联动系统来解决问题,从而导致电网系统的异常运行。但智能电网的建设则相反,依赖于自动化技术来保障电网系统的正常运行,一旦故障出现能够利用自动诊断功能迅速查找到所存在的故障,并将自动控制联动系统将故障解决,从而保障电网系统的正常稳定运行。
(5)智能电网的建设有利于合作共赢体系建立。智能电网的建设能够保证电网运行的稳定性和经济性,对于电网使用的客户来讲能够提供更加优质的服务,并针对客户满足不同的电力需求,有助于与客户之间建立良好的合作关系,提升了电网平台的服务质量,为长期稳定的合作奠定了基础。
3智能电网建设过程中电力工程技术的运用
3.1发电
与传统电网相比,智能电网更加关注新型能源的利用与开发。目前,不可再生能源的日益紧缺限制了我国经济发展。为了解决不可再生能源储量日益减少的危机,提升电网运行的稳定性、安全性和洁净度,近年来我国不断研究微电网接入技术,开发清洁能源,并将分布式能源如潮汐能、太阳能、风能等能源大规模融入智能电网建设中。
新型能源具有高效率、低碳、清洁和可再生的优点,但也具有一定缺陷,如季节性特征、发电稳定性不佳等。
因此,智能电网建设的发电过程中,电力工程技术应重点关注新能源的并网技术,促使新能源能够稳定、安全、大规模地接入电网系统,避免清洁能源并网后影响电能质量和谐波注入,保证并网过程中不对电网造成过大冲击,同时需关注大规模的储能设备、储能技术的开发和运用。
3.2输电
输电过程中,智能电网的工作主要包括监控电网运行状况、检修电网状态、控制电网运行方式以及管理电网寿命等。具有代表性的装置主要包括超导无功补偿设施和波形交流变换器。此外,涉及的相关电力工程技术包括状态检测技术、串联补偿技术、可控高抗技术、交直流滤波技术、高压换流技术、柔性交流输电技术、集约化维护与运行管理技术、无功补偿技术、谐波管控技术以及智能巡检技术等。
柔性交流输电技术涉及的电力工程技术包括电力技术、电子技术、微电子技术、通信技术和控制技术等。柔性交流输电技术具有良好的经济性,与原输电方式完全协调,避免了机械磨损,且控制信号功率小,具有较强的灵活性。输电线路采用柔性交流输电技术能极大提升导线的电流输送能力,显著提高交流系统运行的安全性与稳定性,满足大功率、长距离电力输送的需求,充分利用送电线路减少了发电机的备用容量,保证输电网精确、连续、快速。发生事故时,它能有效避免由于连续反应而导致大面积停电的问题。
3.3变电
电力工程技术在智能电网变电过程中得到了广泛运用,其中建设智能化变电站是典型代表。建设智能化变电站体现了智能电网的自愈化、自动化和信息化,与以往的变电站相比,实现了巨大突破。
电力工程技术在智能变电站中得到了广泛应用,包括采用高速计算机网络实时监控变电站的运行状况、采用光电式互感器、运用有源滤波技术与SVC以及采用智能化开关等。电力工程技术的运用实现了收集信息、物理网络、通信协议和数据模型等多个环节的统一。另外,变电站设备具有自我诊断、自我描述、实时上传数据、共享数据和控制数据的功能,节约了大量人力和物力,且实现了实时控制系统电压、检测变电站设备状态和管理寿命等功能。
3.4配电
配电过程中涉及的电力工程技术包括高级测量技术、智能网络的建设、配电自动化、电动汽车的充电技术以及智能储能技术等。通过运用智能储能设备、充电桩、配电网的信息采集系统和研发智能交通设备、智能楼宇、智能电器设备等,推动了智能电网、智能城市的建设。此外,不断开发超导储能技术、液流电池、钠硫电池等新型配电技术,进一步推动了智能储能技术的产业化发展。
3.5用电
用电过程中,电力工程技术主要表现在智能电表、建立用电信息采集系统、开发智能测仪,研发智能电表、建设高效准确的用户用电系统。电力工程技术的应用实现了电费计价方式的过渡,从以往的统一电价过渡为阶梯式电价。分散式储能设备、智能电气和智能化家电的应用,进一步提高了能源的使用效率,实现了用电智能化。此外,采用终端技术、高级测量等技术保证了智能用电的技术水平,且采用多台缴费的方式提高了服务水平,实现了用户的智能化互动。
3.6通信与调度
智能电网的通信与调度过程中,涉及的电力工程技术主要包括数据采集技术、通信技术和计算机技术。智能电网调度过程中,需成立全面的决策控制体系,实现风险预控、安全预警和动态监测,灵活控制电网的运行状况,实时收集并及时传输相关数据,进而保证电网稳定、安全的运行。另外,为了实现智能电网相关数据的高速传输,需将大量的数据采集平台设置于电网各处,同时成立专门的数据传输平台和数据共享平台,在规定的框架内建设配套的专业网络,建立统一、完整、开放的信息通信平台,从而支撑智能电网通信体系有效运行。
4结语
总之,为了使电力工程技术能够更加有效地应用于智能电网建设工作,相关电力部门应该根据实际情况,探索更有效的措施,不断改进电力工程技术,保证电力工程技术能够更加符合时代的需求,从而促进智能电网建设不断完善丰富,进一步推动电力系统的变革,提高人们用电服务质量。
参考文献