风力发电及其控制技术初探

发表时间:2020/7/30   来源:《当代电力文化》2020年第7期   作者:任立朋
[导读] 随着我国经济的发展,人们生活水平有很大提高,对电能的需求也越来越高。在能源紧缺的现代,新型发电方式逐渐开发出来
        【摘要】随着我国经济的发展,人们生活水平有很大提高,对电能的需求也越来越高。在能源紧缺的现代,新型发电方式逐渐开发出来,风力发电在近年来运用较为广泛,现代控制技术融入到风力发电中,使得发电效率大大提升。围绕控制技术展开讨论,介绍几种典型的控制技术。相信在科技的发展下,更多的技术会被运用到发电系统中。
【关键词】风力发电;控制技术
一、风力发电及其控制技术的发展进展
        1.1风力发电现状
        从技术角度来看,我国大多数风力发电实行三步走战略,即自主创新、消化吸收及引进技术。目前我国小容量等级的风电设备渐渐退出市场且兆瓦级别风力机组取而代之,说明我国基本具备自主研发兆瓦级风机的技术能力。除此之外,风电设备制造产业进入蓬勃发展阶段,例如:国产机组占据着越来越高的国内市场份额,换而言之风电行业中国产风电装备大致满足风电生产使用的需求,特别是风电机组整机及关键性零部件等,但是少部分技术要求严格的零部件依赖进口,例如:变流器及主轴轴承等。由此可见,重视风电装备制造技术创新不断增强自主研发能力占据着极其重要的地位及作用。
        1.2风力发电控制的必要性
        由于自然风速度快慢及方向大小存在着明显差异性,客观上要求相关技术人员重视风力发电控制技术,例如:控制机组切入及切出电网、限制输出功率、检测风轮运行期间中各种故障予以保护等。近几年来我国风力发电控制技术日趋成熟,即由定桨距恒速运行技术向变桨距变速运行技术转变,基本达到预期的生产目标。从风力发电机组角度来看,以调节机组功率为核心技术之一,其调节方法可划分为变桨距调节、定桨距失速调节及主动失速度调节。目前我国风力发电机组基本实现变桨距变速运行,结合风速风向的变化情况基本实现脱网、并网及调向控制各个发电机组,充分发挥变距系统作用,控制机组转速及功率。
        二、风力发电及其控制技术研究
        2.1微分几何
        该项技术由数学知识演变而来,其包括一定的线性关系,控制过程就是利用这一特性来完成的。此技术的控制原理如下:该数学知识表现出来的系统实际是非线性的,经过某种处理后,成为具有一定功能的线性系统,致使控制技术逐渐趋于完善。对于风力发电本身,其系统本来就是非线性的,风速的大小是人为无法控制的。当使用此技术时,首先要将这一问题进行解决。然后是对双馈发电机的各项操作,主要是对经过电机的各项数据进行反馈解耦,这一过程需要将非线性情况向线性转化,从而实现动态解耦。这对发电效率的提升非常有帮助,装置能够尽可能多的捕获风能。
        若风速过大,需要将电机的转速适当调低,这样才能保持其功率不变。通过一系列的步骤,装置将很好地完成向线性关系转化的过程,根据这一关系,可设计出符合实际情况的发电机组,减少企业成本的同时,保持充足的电能供应。现且该技术对CPU的要求很高,普通的CPU无法使用到此技术当中。目前研究人员正在攻克两类难题,可见该项技术具有广阔的发展空间。
        2.2变速恒频发电系统
        简单来说,该系统的控制方式就是风力机采取变速运行的模式,发电机的转速随风速变化而变化,但可以通过电力电子变换装置得到恒频电能。根据贝兹理论,理想情况下风能所能转换成动能的极限比值为16/27约为59%。
        恒速恒频发电系统的所采用的风力发电机只能固定在某一转速上,但是风能具有一定的随机性,其能效会受周围环境的影响而变化,所以风力机必定会偏离最佳速度,这就必然会在一定程度上降低发电效率,而变速恒频发电系统就能够在风速变化的条件下,来适当调节转速,从而让其一直保持着在理想的转速下运行,确保发电效率。变速恒频发电系统是目前主流的风力发电机组控制系统,对于风力发电系统而语言,风力发电机组应该尽可能的确保能量转换效率,而变速恒频发电系统主要通过控制电机转矩,来实现高效率的能源转换。


        2.3自适应与滑模变结构
        该项技术运用到发电过程中,可以捕捉系统快速变化的各项数据,将系统处于实时监测之下,实现对各运行参数的良好把控。该技术的工作原理如下:系统运行过程当中,若发现明显的波动,此技术控制的监测装置就能精确捕捉到这一点,然后系统对该突变点进行分析,根据分析结果对发电装置的相关速度参数进行适当调整,保证发电过程的顺利进行。在以往的系统当中,若想控制运行速度,需要先建立起相应的虚拟模型,由于数据变化的无规律性,模型的建立是非常困难的。错误的模型会误导工作人员,这对速度的控制是非常不利的。该项技术的出现很好解决了这一问题,自适应也是目前在风里发电中应用最多的技术之一。
        此项技术的最大特点,就是对各种切换开关的灵活控制。当系统运行不再需要这一档速度时,该结构接收到系统传来的相关变档信息,然后做出反应,自动将该档位的开关闭合,打开系统需要的相应档位开关。系统运行中,人员无需对发电装置重启,即可实现对装置换挡的控制。该技术的特点主要体现在这几点:设计简单,并不需要过于复杂的结构;可随时进行相应的切换工作,具有较强的灵活性;系统参数变化时,不会影响到该结构的正常控制,具有很强的稳定性。该技术能够将自然干扰与装置隔离开来,最大程度保证发电过程正常进行,没有外界环境的影响,系统将会处于非常稳定的狀态。
        2.4双馈发电变速恒频系统
        双馈发电变速恒频系统是使用双馈绕线式发电机的风力发电机组,所谓双馈,指的是双端口馈电,定子和转子可同时发电,互相切割磁感线。通常来说,双馈电机必须配合变频器使用,变频器给双馈电机转子施加转差频率电流,起到励磁的作用,有效调节励磁电流的相位、频率、幅值,实现稳定的定子恒频输出。在风力发电系统中,无论风力作出什么样的变化,当电机转速改变的时候,利用变频器就可调整旋转速度,从而让电机的转速和风速之中保持同步(转子励磁电流改变转子磁势)。该系统主要是依靠转子侧来实现的,通过转子电路的功率由交流励磁发电机转速运行来决定,所以该系统的成本较低,设计较为简便,且后期的维护也十分便捷。另外,该系统还能吸收更多无功功率,可有效解决电压升高的弊端,从而有效提升电网运作效率,保障电能换换质量以及稳定性。
        2.5无刷双馈发电系统
        无刷双馈发电系统是目前风力发电中的新型控制系统,其运作原理和传统交流电机差别较大,无刷双馈发电系统中的电子定子,具有两套不同极数的三组绕组,可分别称为控制绕组和功率绕组,通过电机转子的磁动势来实现能量转换,如果改变相应的频率以及相位,就可改变电机的运行方式。无刷双馈发电系统和普通系统的主要区别在于,电机定子上有一套控制绕组,可通过调节绕组上的电流频率来改变转速,不过该技术的制造成本较高,并且无刷双馈发电系统的体积较大。
        三、结语
        通过本文探究,认识到电力行业作为国家支柱型产业之一,其发展情况与城市居民日常生产生活间存在着密切联系,对推动国民经济发展占据着极其重要的地位及作用。同时,即便近几年来我国持续扩大风力发电的资金投入及技术投入,取得令人满意的技术成果,但是仍存在着较多问题亟待解决。因此,地方政府及相关部门秉持具体问题具体分析的工作原则,通过岗位培训及知识宣教等方法帮助技术人员全面掌握风力发电的工作原理及设备类型,灵活运用各种控制技术手段,大大提高风力发电效率,进一步促进风力发电控制技术水平进步。
        参考文献
        [1]喻挺.风力发电及其控制技术新进展探究[J].智能城市,2018,4(18):166-167.
        [2]石海滨.关于风力发电机及风力发电控制技术分析[J].民营科技,2017(09):70.
        [3]郭海涛.风力发电机及风力发电控制技术分析[J].民营科技,2016(04):6.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: