建筑深基坑工程管理措施

发表时间:2020/8/5   来源:《建筑实践》2020年8期   作者:谭军亮
[导读] 现阶段,在建筑工程中,关于深基坑工程的施工过程非常复杂
        摘要:现阶段,在建筑工程中,关于深基坑工程的施工过程非常复杂,在实际施工中涉及众多因素的影响。目前,建筑工程获得了一定的发展,地下建筑技术也获得了一定程度的提升,在实际施工中,建筑深基坑工程的开展也获得了广泛应用,因而就需要在建筑施工中,针对深基坑工程施工中可能对工程造成影响的因素进行合理的管理,从而推动建筑深基坑工程的顺利进行,提高建筑施工质量。
        关键词:建筑;深基坑工程;管理措施
        引言
        高层建筑已然成为建筑行业发展的新浪潮,而作为高层建筑基础施工常用技术,深基坑支护技术的应用可以为后续项目建设打下良好支撑,再加上支护新工艺、材料的融合应用,促使深基坑支护技术的作用与能效逐渐显现。但是受限于深基坑边缘距的不断缩减,加之高层建筑施工标准的愈发严苛,致使深基坑支护施工的难度增大。而在施工期间受到工艺应用、设计不到位等因素的影响,致使深基坑支护施工出现些许问题,不仅影响到基坑边坡支护效果,甚至会增大基坑支护事故的发生概率。正因此,如何进行深基坑支护问题的有效消除,成为业内技术人员的高度重视问题。
        1加强建筑深基坑工程施工管理的重要性
        在房屋建筑中,尤其是高层的房屋建筑,无论从人防、车位的配比设计还是从结构安全的角度考虑均需要建设相匹配的地下室,然而地下工程在施工中涉及的施工程序和环节比较多,同时因施工范围广、施工工艺复杂、施工人员多,所以对相关的施工人员要求都比较高,否则易导致施工安全事故出现。而在建筑工程中,通过有效的管理手段强化对建筑深基坑工程的管理将进一步帮助提高施工质量,并帮助工程管理人员有效应对施工中出现的突发事故。对于建筑深基坑工程的管理人员来说,在实际的管理工作中,要紧密结合施工现场的地质条件和水文环境,制定相应的安全事故应急预案,从而更好的确保建筑深基坑工程的施工质量[1]。此外,在涉及建筑深基坑支护技术的施工中,管理人员要着强调调安全施工的重要性,并根据施工现场的具体情况进行分析,针对施工地点存在的障碍物、施工作业面以及施工周边的环境因素都需要进行合理调整,从而有效提高建筑深基坑施工的安全可靠性。
        2建筑工程施工中边坡支护技术应用分析
        2.1锚杆支护技术
        最基本的边坡支护技术,就是通过土锚杆和拦土墙进行施工,土锚杆可以将地基和墙很好地结合在一起,通过结构上的独特构造,对多重方向上受到的压力进行有效的分散,除此之外,还可以选择使用螺栓进行支护结构的控建。施工人员应该对螺栓的工作条件和受力强度有一个初步的估计,通过计算和实地勘察,选择最佳受力点来放置螺栓结构。这样才能够完全让螺栓发挥支护的作用,确保了施工结构的稳定性,保证了施工安全。锚杆支护在实际应用过程中,有三个要点需要注意:首先,是准备工作方面,要注意对于原材料的选择,不同的施工要求,原材料的选择要进行调整,着重注意对于锚杆直径的要求、强度的要求等;其次,在实际施工过程中,具体的施工位置与锚杆实际钻孔与土体结合能够达到的倾斜角程度,在详细测算后再开展施工进程,避免不规范施工带来的返工作业,耽误工程进度。其次是工艺流程的严格执行,既是为了施工环境的安全性,也是为了施工工程的质量;最后,对于质量的核查,质量的核查要与施工进程同步开展,例如对于灌浆作业的质量核查要从几个数据进行详细考核,如灌浆作业的时间、水灰比的实际比例、强度等等,只有从细节入手,才能够对于质量有精准严格的把控。
        2.2地下的连续墙处理技术
        连续墙处理技术,指的是在施工过程中,事先在地面上按好符合施工要求的沟渠,并且在沟渠里填筑混凝土或水泥等施工材料,这样一来,施T1程的地下部分就形成了一堵坚固而又连续的墙,这堵墙不仅起到了基本的支进作用,还具有抗洪减灾的作用,不仅稳固了结构,还让工程增强了抵御自然灾害的能力。因此,这种施工技术被广泛应用于洪水多发地区,以此来减少自然灾害对工程造成的损失。这种连续墙处理技术的优点在于,不影响地下管线的架设,而且结构更加稳固。当在地质条件比较复杂的地区施工时,这种边坡支护技术就有了用武之地,地下的施工对于环境的破坏也是比较小的。
        2.3土钉塘的支护技术
        土钉墙技术是一种相对廉价的施工技术,具有施工效率高、支撑作用好、更适合于低成本预算的建设项目。在这种施工方法中,用地钉支撑墙。支护结构稳定后,进行混凝土施工,达到正确的支护效果。最后,必须安装排水网,以减少水侵蚀对结构造成的破坏,并增加支撑结构的稳定性。虽然这种建筑的成本相对较低,但需要相对较高的室外条件。
        3优化措施分析
        3.1推进建筑深基坑工程信息化管理
        在探寻建筑深基坑工程管理措施的过程中,需要结合深基坑支护技术、深基坑工程的施工难度以及施工现场对深基坑工程有影响的因素等方面进行合理选择。结合深基坑施工中可控与不可控的影响因素来看,就需要不断加强对深基坑施工现场的检测,因而就需要引进信息化管理技术,加强对深基坑工程施工进度的信息化管理,从而通过信息化的方式方便现场管理人员对质量与周围环境的检测,实时保障深基坑工程的安全作业。在信息化管理的建筑深基坑施工现场,有效的检测体系可以结合施工周围的环境因素。

以某周边环境复杂、紧邻新老小区、地块内可使用场地有限,且地上地下障碍物较多的老城拆迁地块为例,在开始施工前,可采取如下措施:首先,对施工周围老旧居民楼进行了证据保全、施工影响性鉴定、房屋安全鉴定、召集业主代表开会及时解决直接影响居民生活的问题以及后续的修复工作;其次,地下室土方开挖,大体积混凝土浇筑期间协调居民临时外迁,确保施工不间断;再次,考虑周全基坑监测布点,确保影响范围内所有建筑物纳入监控范围,并在地下室施工阶段加大加密测量次数;最后,最好基坑沉降观测,目前全自动信息化技术已较普遍,可结合至手机程序实现自动预警提示等功能。此外,还可以有效分析施工的环境噪音、粉尘污染等对施工地点东侧南侧及北侧小学的影响,同时针对深基坑施工导致周边的沉降现象进行实时检测,从而对施工中可能出现的突发情况进行科学估计,并针对相关情况采取相应的应对措施,提高深基坑工程的施工安全。
        3.2重视对基坑施工进行全过程质控
        深基坑支护施工过程的质量控制关乎到边坡支护的整体效果,若支护施工期间产生质量问题,不仅会增大事后补救的难度,甚至会增大深基坑支护施工成本的投入。对此,需重视将全过程质控原则落实于基坑支护施工中,具体体现为:(1)施工准备阶段。要求相关人员加大对现场勘察调研的力度,做到对现场及其周围施工情况的全面掌握,以此为依据科学编制施工图纸。同时,检查降水系统运行情况,保证降水系统的稳定运行。(2)施工阶段。禁止出现锚杆位置、型号、数量肆意更改的现象,并要求人员严格按照规范标准进行钢筋网间距与放坡系数等参数的合理控制。若施工阶段出现工程变更,需组建专家组进行变更评审,保证变更通过审批后方可实施。同时,要求施工人员秉持着分层、分段的原则进行基坑挖掘,并按照分层、分段支护的原则来提升基坑支护效果。做到施工期间开槽支撑、先撑后挖,禁止出现超挖现象。尽可能降低土方开挖过程中对土体造成的扰动。另外,需重视对基坑无支撑暴露时间的缩减,避免因暴露时间过长而影响到基坑支护效果。
        3.3合理选择深基坑支护形式
        在施工过程中,要依据工程要求选择更具针对性的支护形式与技术。要依据不同区域的特点,合理的对深基坑支护形式进行选择。在实际建筑工程中,土钉墙、重力式水泥土墙、放坡以及支挡式结构的使用最为普遍。通过研究表明,支挡式结构支护在建筑工程中的应用十分广泛,并且适用性也十分突出,可根据实际情况予以更加灵活的运用,所以其也成为了施工单位最为青睐的支护形式。在安全等级为二级或三级的基坑工程中,采用土钉墙支护形式,这种方式的基础上采用了具有多种结构的土钉,具体选择应结合施工环境土质形态和地下水位等情况。在工程应用中,重力式水泥土墙支护结构常用于安全等级为二、三级的地基基础上,广泛应用于我国淤泥土等工程环境中,它对地基基础的深、浅程度要求很高,一般要求地基的深。放坡这种支护形式的适用范围相对较小,这种支护形式广泛应用于三级安全基坑,在施工中常与其它支护方式结合使用。
        3.4重视变形监测的开展,加强施工补救
        做到对基坑支护施工全过程的监测,具体监测内容涵盖地下管线变形、基坑边坡变形以及周围建筑物变形监测等,构建完善的现场变形监测体系,做到对边坡支护施工数据的全面收集。依据对监测数据的分析,帮助人员明确掌握支护结构的实际应用情况,判断基坑支护施工的开展是否存在偏差,并实现对基坑内土体变形现象的第一时间发现,全面掌握基坑支护施工期间存在的地下管线变形、土方沉降等现象。若支护施工存在偏差,可依托于变形监测的开展进行结构参数的第一时间纠正。而针对已建成的施工部位,则需结合实际情况采取合理补救措施来强化施工质量控制。若施工监测期间发现部分位置出现异常情况,相关人员需立即上报问题,依据对异常情况的分析制定科学应急措施并加以实施,避免支护异常情况出现继续恶化的现象。若深基坑施工出现严重滑动、变形的现象,则需第一时间分析其成因并制定科学加固、补救措施,做到对边坡滑动、变形现象的抑制。
        3.5做好基坑降水、排水及止水工作
        在应用深基坑技术时,为了保证深基坑的稳定性,则要做好基坑降水、排水与止水等工作。在实际工程中,施工单位要了解土层的渗透系数,并对承压情况进行计算,如果计算结果与工程要求存在差异,则要采取措施来进行节水减压,或者通过设置降水井等方法来解决这一问题。因深基坑地下水位较高,且受降雨量的影响,长期使用易造成施工区域周围环境发生变化,从而影响了基坑支护的稳定性和安全性。借助于井点降水法,可以有效地改善施工场地土的物理性质,同时借助于此方法,可以减少基坑支护技术应用过程中出现的结构变形问题。在深基坑工程施工过程中,由于施工区域周围环境的影响,当雨水流量超过基坑施工要求时,可采用拦水帘遮挡的方法,以保证基坑的安全。当前,国内一些深基坑塔身结构在应用中采用地墙等止水方法,这种方法能有效地实现支护桩的结合,有利于深基坑施工的顺利进行。
        结语
        基坑工程时空效应理论是指在基坑工程施工中科学地利用土地自身控制地层位移的潜力,来解决软土深基坑稳定和变形问题的设计方法和施工工艺。时空效应法就是考虑深基坑施工的时间和空间效应的施工步骤,根据基坑规模、几何尺寸、围护墙体及支撑结构体系的布置,基坑地基加固和施工条件,按照“分层、分块、对称、均衡、限时”的原则确定施工方案。时空效应理论的应用能有效控制基坑变形,保护周围建筑物、地下管线、临近隧道等的安全,同时可以提高施工效率,节省工期。综合运用深基坑盆式和岛式开发,合理确定分层分块施工参数,减少无支撑暴露时间,是时空效应理论应用的关键所在。
        参考文献
        [1]余炎.建筑工程中深基坑支护的施工技术管理[J].居舍,2020(2):81-82.
        [2]陆文洲.建筑工程施工中深基坑支护的施工技术管理[J].四川水泥,2020(1):193.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: