数形结合思想在初中数学教学中的应用与实践

发表时间:2020/8/13   来源:《中国教师》2020年17卷7期   作者:覃斌
[导读] “数”与“形”是数学领域两大研究主题,“数”就是数量关系,准确、可操作、易于掌握,
        摘要:“数”与“形”是数学领域两大研究主题,“数”就是数量关系,准确、可操作、易于掌握,“形”则是空间形式,生动、直观、易于理解.数形结合可以把二者进行转化统一,从而结合二者的优势,达到认识数学本质的效果.在初中数学课堂中运用数形结合思想方法进行教学,不仅能让学生理解数学知识的本质和内涵,还能提高课堂效率、优化教学方法.鉴于此,本文对数形结合思想在初中数学教学中的应用与实践进行分析,以供参考。
关键词:数形结合;在初中数学;数学教学
引言
        将数学的思想渗透到学生的学习中,掌握数学学习的技巧和方法,能够使学生得到快速的进步,从而提高对数学的兴趣。教师要加强对数形结合思想的渗透和锻炼,使得学生能够在解决数学问题时运用数形结合的思想,学会将抽象的知识进行转化,养成良好的学习习惯,提高学习的效率,这样才能不断提高个人能力。
一、数形结合思想有助于学生更好地理解数学概念
        在初中数学教材中,很多数学概念、理论、数学定理和公式是学生需要牢固掌握的基础内容,学生只有在充分掌握这些内容的基础之上才能拥有良好的数学知识应用能力[1]。数学概念、理论、定理、公式都是专家、学者对数学知识进行充分研究而得到的思维和思想核心,是学生学习数学知识的基础,是数学知识的精华。但是这些知识具有单一、乏味、理论性强的特点,因此,通过数形结合的方式对这些概念、定理、基础知识进行理解,可以有效提升学生的理解能力,能使学生对相关的数学概念和定理有更深刻的认知。
二、数形结合思想在初中数学教学中的重要性
        数形结合思想是运用于初中数学教学之中的常见思想。由于其能够将抽象的数学语言、数量关系与直观的几何图形位置关系结合起来并进行相互转化,帮助学生理清解题思路,拓展学生的数学思维。很多学生在刚接触初中数学时,对一些相对复杂的数学概念以及公式很难真正理解,且在利用所学内容解题的过程之中无从下手,久而久之,学生对数学学科的学习积极性就会被消磨,甚至出现畏难心理,影响学生的数学学习能力的提升。教师引导学生利用数形结合思想解题,不仅可以帮助学生缓解因理解困难而出现的畏难情绪,还可以让学生养成通过数形结合思想解决数学问题的解题习惯,对学生数学思维能力的提升有很大的帮助作用。在实际的数学教学之中,教师可以引导学生通过数形结合思想来解决数学不等式、函数以及几何等多种类型的数学问题,“数”与“形”的巧妙结合是学生扫清数学难题的一大利器,可以帮助学生不断提升自身的数学综合素养。
三、初中数学教学中数形结合思想的应用策略
        (一)提供材料,引导学生进行概括
        教师是学生的领路人,教师要为学生打开学习的途径,提供信息,引导学生主动的进行问题的思考和解决,从而使得学生能够掌握学习的技巧,得到更快的进步。比如我们学习函数这部分知识时,需要求解函数的取值范围,利用数形结合的思想能够更好的解决问题,教师会给我们提供一些参考资料,结合前面所学的各种函数的图像,来对函数的取值范围进行求解,我们通过画图像,在图像上标注出x或者y的范围数值,就能够画出对应的范围,从而找到问题的答案,而且还不会出现错误。阴影部分代表的是函数的范围,这样学生能够很快的找到范围,节省了做题的时间,而且提高了做题的效率。
        (二)利用数形结合思想,增强学生对数学的学习兴趣
        为了让学生对抽象的数学知识产生一定的学习兴趣,教师可以通过在教学之中使用数形结合思想帮助学生对抽象知识加深理解,从而激发学生的数学学习兴趣。

以数轴为例,数轴作为初中数学数形结合思想运用的常见工具之一,能够直观形象地将有理数表示出来,教师通过利用数轴可以帮助学生认识有理数,进行有理数的比较。利用数形结合思想,可以让学生很好地理解抽象的数学知识,培养学生对数学的兴趣,使数学教学效率得到提升。
        (三)教学导入环节应用数形结合思想
        教学导入环节是课堂教学顺利开展的基础,教师在导入环节引导学生应用数形结合思想,可以使学生充分感受到数形结合思想的重要性,也能够为在课堂教学过程中顺利应用数形结合思想奠定坚实的基础[4]。因此,在课堂导入环节,教师应渗透数形结合思想,将数学知识中的数与形两个基本量有效结合,为学生的学习奠定坚实的基础。例如,教学“负数”的相关知识时,为了使学生对负数有更清晰的认识和了解,在课堂导入环节,教师可以通过画数轴的方式使学生理解正数、零、负数的概念,在此基础上引导学生对负数的相关理论知识进行学习,使学生理解起来更容易,课堂教学效果也会有明显的提升。此外,教师在课堂导入环节引入数形结合思想,通过画数轴的方式引导学生学习负数的相关内容,可以有效提高学生的学习积极性和学习动力,从而使整节课的教学效果和教学质量得到有效保障。
        (四)在课后复习阶段应用数形结合思想
        学生对初中数学知识的学习不仅需要在课堂上进行,课后巩固和复习也非常重要。因此,数学教师应当引导学生在复习阶段应用数形结合思想,以便他们更好地理解所学知识,同时促进学生复习效率的提高。例如,在引导学生对“一元一次不等式”相关内容进行复习时,教师就可以让学生在平面直角坐标系内结合有序实数绘制相应的图像,使学生结合图像来理解不等式的数量关系,以巩固学生对一元一次不等式的掌握水平,进而提高学生的复习效果。
四“数形结合”应用于初中数学教学实例分析
        经过小学六年的数学学习,已经为学生初中阶段的数学学习打下了良好的基础,初中阶段的学生已经对图形知识有了一定的认识和了解,在利用数学工具方面也更加娴熟.例如,根据题意学生可以运用圆规、直尺、量角器、三角板等数学工具绘制出数学题中所描绘的数学图形,并以数学图形为基础进行解题.数轴、平面直角坐标系、抛物线、空间几何等的教学中都广泛地应用了数形结合的数学思想.例如,小红和小李是同班同学,两人约好放学一起去游乐场玩,小红和小李从学校出发,步行15分钟后到达离学校800米的游乐场,玩了十分钟后小李突然想起自己把作业落在学校了,以原速返回学校.小李走后五分钟小红突然不想在游乐场玩,想跟小李一起回家,即返回学校追赶小李,在15分钟内回到了学校并遇见了小李.运用平面直角坐标系的知识将小红和小李的离校时间与距离的关系体现出来.解决这类数学问题是应先列举生活中的实例引导学生进行思考,然后引导学生对题干进行分析,利用设未知参数的方法将距离和时间表示出来,利用画数轴的方式将两者间的关系明确,这类题可以很好地帮助学生学习数轴的相关知识,并借此能够更好地理解数轴的概念和运用数轴进行数学学习.
结束语
        学生在日常解决数学问题时,很容易因为难以理解数学问题或数学问题相对抽象而不能得出正确答案,导致学生的数学学习水平难以获得提升。“数”与“形”是数学中的两个基本概念,教师将数形结合思想运用到数学教学之中能够帮助学生将抽象概念与形象概念相互转化。教师可以通过这一教学方式逐渐培养学生良好的数学思维习惯,促进学生数学学习能力的有效提升。
参考文献
[1]张隽.数形结合思想在初中数学教学中的渗透探究[J].学周刊,2019(11):45.
[2]张璀.初中数学教学中数形结合思想的应用[J].数学学习与研究,2019(03):38.
[3]张发启.数形结合思想在初中数学教学中的应用研究[J].课程教育研究,2019(04):149.
[4]王松苗.谈“数形结合”在初中数学教学中的有效运用[J].数学学习与研究,2019(02):56.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: