草原放牧的数学模型及预测

发表时间:2020/9/1   来源:《教育学文摘》2020年35卷10期   作者:邹存刚
[导读] 目前草地放牧系统的利用存在较严重的不合理性

         摘  要:目前草地放牧系统的利用存在较严重的不合理性,系统破坏严重,采取合理的放牧管理策略,确定适当的放牧率,使得系统输出最多而又达到可持续发展的目的. 为了给放牧的稳定和持续性提供理论依据和方法,在放牧过程中,根据研究的因素找到羊、草与放牧者之间的关系,找到可以稳定草原生态平衡又能保持羊增长的方法,还可以针对放牧的实际情况,作相应的调整. 建立微分方程模型,利用微分方程稳定性理论,研究平衡状态的稳定性,并且作图分析得到结论通过合理放牧来维持草原草的数量达到维持草原生态平衡,并提出了有效的放牧措施.
         关键字:可持续;互利系统;微分方程;平衡点;稳定性
1引言
1.1背景
         目前,草地由于过度开垦目前、过度放牧引起的草原退化、土地沙化面积不断扩大,造成生态环境恶化,引起沙尘暴.  任何生态系统都有自己的自动调节能力,能使它保持一种动态的平衡,但这种自动调节能力是有限的. 草场退化是草场系统中能量流动和物质循环的输出入间失去平衡的结果.  因草场类型不同,引起退化的原因各异,草场植被演变的趋向也有很大差别. 如干旱草原由于气候干燥,放牧过度,易造成牧草生长不良,覆盖率降低,甚至引起沙化;草甸草原因水分过多,易产生沼泽化等. 草场退化可使载畜量降低,影响和限制畜牧业的发展. 如美国在20世纪30年代大肆开垦西部草原,导致出现大范围的“黑风暴”,成为严重的历史教训. 中国草原因开发利用不当,退化草场已占总数的1/3. 其中内蒙古鄂尔多斯高原的退化草场竟占50%之多.  故采取有效措施,防止草场退化,是保护草场资源,发展畜牧业的重要措施.
         中国畜牧业迅速发展,畜牧业产值不断提高,自1949年的33.7亿元增加到1978年的209.3亿元;1990年,畜牧业产值进一步增加到1967亿元,是1949年的58倍多,1978年的9倍多;至2010年,畜牧业产值已经超过20000亿元,占全国农业总产值的比重超过为30.04%,可见随着中国畜牧业产值的不断增加,其在农业中的地位也有所提升,2010年畜牧业已经成为中国农业及农村经济的支柱产业. 但我国畜牧业标准化程度不高,整体生产水平较低,特别是羊群的放牧过程. 研究羊群与草原草增长的平衡与稳定,合理控制放牧强度,能使羊群增长的同时,保持资源的持续开发.
1.2 研究现状
   蔡卫在论文《数学模型在生态系统的应用研究》中研究了在只受环境承载能力的影响下种群的变化,建立了竞争,依存,竞争合作以及捕食模型,并对这些模型进行初步的生态学分析. 文献[1]研究了种群增长的稳定性,建立了compertz增长的数学模型,分析和讨论了平衡点的存在性,稳定性. 并进一步阐述了保持生态系统平衡对资源的持续开发. [2]研究并建立了常微分方程组类型的生态数学模型,应用常微分方程稳定性理论作出稳定性分析,并且主要使用李雅普诺夫第二方法讨论多种群落的全局稳定性. [3]研究了随着畜牧业生产的发展,天然草场牧草生产的季节性与家畜营养需要相对稳定性之间的矛盾. 暖季牧草处于“盈供”状态,家畜膘肥体壮,冷季牧草处于“亏供”状态,家畜往往因乏弱而大量死亡. 从生态学角度分析了这些历史上遗留至今的春乏问题.  [4]研究了种群的增长和变化,建立了单种群模型和两种群互相作用的模型,给生态现象做出了解释和控制的方法. [5]研究了数学生态学中的竞争,互利(互惠)系统. 王顺庆,王万熊等研究了在什么条件下互相竞争的两种群长期共存?什么条件下互相排斥?参数在竞争系统中起什么作用?在什么情况下发生突变?建立了一系列两种群相互作用的数学模型,进行了分析. [6]探求解决天然草场放牧绵羊春乏死亡的途径,在亚高山草甸类草场上对放牧成年藏系绵羊春乏死亡率的数学模型和数字预测方法进行了研究,以期达到提高科学养畜水平. [7]研究了一类捕食者具有人工控制迁移率的Holling-II 型功能性反应的捕食- 食饵模型的全局动力学性质. 首先建立了一个时滞微分方程组数学模型. 研究了该系统平衡点的存在性和稳定性;接着以时滞为参数,分析Hopf 分支存在的充分条件;利用中心流形定理和正规型理论给出确定Hopf 分支周期解方向和稳定性的计算公式. [8]研究了一类具有四类功能反应的捕食者-食饵系统,建立了微分方程和Poincare-Bendixson模型,对该系统的平衡点进行了分析,并证明了该系统存在的一个极限环.
以上研究人员,研究的问题背景都是在自然环境自治系统下来考虑种群的增长,和种群间的关系. 而人们在对自然资源开发利用时,特别是放牧业中,对所需要的物种进行人为的保护,所以此类物种的增长不仅只依赖于环境,还有人为的保护. 这就是我所研究的羊的变化与生存在自然环境中的种群的不同.
2 微分方程模型
2.1 模型假设
         虽然在自然环境中草的生长则有自身的阻滞增长作用,但在放牧过程中,只对长大的草进行放牧,对幼草不进行放牧. 另外,羊和草存在互利关系. 羊对草的促进可看作羊在留下的粪便,使无机物分解在土壤里,促进了草的生长;在草长高的时候羊群把长高的草吃完,不至于阻挡低处草的见光,也促进了草数量的增加. 考虑到人工饲养的羊的放牧与存在于自然界中的羊的生存不同. 不同点在于人能给所饲养的羊提供丰富的资源生长,如优异的饲养厂、饲料以及提供其他条件提高羊对草的利用率等条件. 所以人工饲养的羊的增长以指数规律增长. 设羊离开草无法生存,设它独自存在时死亡率为b. 但草为它提供了事物,相当于使羊的死亡率降低,且使它增长. 根据模型生态学意义,做如下假设:
         x,y为草和羊的多少,则x>0,y>0. 设x,y的增长率为,,为x,y,z的连续函数,都有连续的一阶偏导数.
         羊和草相互存在制约因素. 当y=0时,0;x=0时,0.
         两种群互利关系对双方增长有利,即0,0.
         草和羊同时存在时,草不会达到其环境容纳量.
         放牧时只对长高的草进行放牧,对还在是幼草的地方不进行放牧.
2.2 符号说明
  t时刻可以被放牧的草的数量
  t时刻还不能被放牧的幼草的数量
  t时刻放牧的羊的数量
             长高的草受环境影响的死亡率
        幼草长为可供放牧的成草的成长率
             羊对草的促进作用
     羊独自存在时的死亡率
     幼草的成长率  
     被放牧的成草所占成草的比例
     放牧的效率
2.3 模型建立
         放牧过程羊对草有一定促进和依赖作用,有助于草的增长;提供放牧的成草依赖于幼草的成功成长;于是x(t),y(t),z(t)满足方程:
               (1)
               (2)
                  (3)

         
3.模型分析
  (1)稳定性分析:
根据微分方程(1),(2),(3)解代数方程组

得到平衡点:   

其中显然不稳定,对于,当1,0时有意义.       
(2)画图分析:
     由方程:
    
     令,,,,,,取初值,在Maple环境中输入如下程序运行后,可得数值解.
restart:
with(plots):
g:=0.05: c:=0.1: b:=0.1: d:=0.05:
r:=0.5: h:=5: a:=0.1:
eqs:={diff(x(t),t)=-g*x(t)+r*y(t)+a*z(t)-c*x(t)*z(t),diff(y(t), t)=h*x(t)-(g+r)*y(t),diff(z(t),t)=-b*z(t)+d*x(t)*z(t)};
init:={x(0)=16, y(0)=30, z(0)=10}:
sol:=dsolve(eqs union init,numeric):
odeplot(sol,[[t,x(t)],[t, y(t)],[t,z(t)]],0..150,numpoints=1000);
odeplot(sol,[x(t),y(t),z(t)],0..50, numpoints=150000);
在运行程序后,可得到图1,2,3,4的结果.




         图1 关于的函数图像,其中黄线表示;绿线表示;红线表示
        
         从图1可以看出,刚开始羊对草有明显的依赖,此时消耗了大量草呈现急剧下降的趋势. 过一段时间后幼草增加,被放牧的草也随之增加, 由于三个种群之间有促进制约的关系, 一定的周期变化后,使得三者各自数量都趋于稳定的态势,改变系统中的参数进行大量模拟计算,当充分大时趋于,趋于, 趋于,即是稳定的,该系统表现出了渐进稳定的生态循环性.
        



                           图2 的相图


         由图2中观察得,最初的阶段:刚进行放牧时,看图像的右边,可进行放牧的草短时间内减少,而幼草在增加;再从上往下看当放牧时成草减少. 第二阶段:随着放牧的进行草也在缓慢增长,两则逐渐体现相互促进的效果,特别是羊对草的一定程度的促进效果,使得幼草增长,成草也增长. 一定周期之后两则趋于平衡稳定. 趋于2,趋于18.









图3 的相图


     由图3观察得到:一开始放牧时被食的草减少,此时对羊的供养能力体现也增长,但随着放牧的进行减少而继续体现对的供养能力继续增长,一段时间后由于的减少也随之减少. 体现与之间的间接影响一定后两则逐渐平衡稳定. 趋于18,趋于43.





图4 的相图
     从,的像图中可以看出与直接制约,与微小的直接促进关系: 刚进行放牧时的出现促进了的缓慢增长,之后随着放牧进行消耗了,使逐渐增长,随着放牧的进行当与都变小对的供养能力减弱,所以呈下降的趋势. 这样进行若干周期后与与趋于平衡稳定,稳定时趋于2,趋于43.

4.采取有效放牧措施保证放牧的可持续性
根据以上对系统稳定性分析可采取以下合理的放牧方式:
         (1)采用灵活的放牧方式,一是分群放牧,将羊群按年龄、性别、大小分成小群,每群数量50只-100只不等,育肥羊、育成羊青草期组群放牧,繁殖母羊和种公羊在当地放牧;二是根据羊的采食特点,采取分片轮回放牧的方法即每日出牧后先让羊在往日放牧的地方吃草,待羊吃到半饱时,再到新鲜草场放牧,等看到羊不大啃吃时再放开手,采用“满天星”方式让羊吃饱为止. 这种“先生后熟,先紧后松,一日三饱”配合两季慢(春秋两季放牧要慢)和三坚持(坚持跟群放牧、早出晚归、二次饮水)与三稳(放牧、饮水、出入要稳)以及四防(防跑青、防扎窝子、防害和防病)的方法有利于放牧羊群的增长.
         (2)对草地的季节性利用. 即根据气候、草地植被、地形、水源和管理等条件的差异以及牧民对草地的利用习惯,按季节划分放牧草地,随着季节的更替,顺序地年复一年地轮流放牧.

5.总结与展望
          由给出的在生态学上的意义及上述结果表明,人工饲养羊在放牧过程中控制放牧强度,可使草原系统不受破坏也可使羊的增长最大化.考虑到羊群是人工饲养和放牧且对草原影响有:不放牧,草地枝叶过多,对下层植物有遮光作用,有机物合成下降;不放牧,植株自然衰老的组织多(被动物摄食的少),有机物消耗增加;不放牧,缺少动物粪尿的施肥作用,影响有机物合成.这些因素都会降低草的产量.另一方面,草原属于可再生资源,要保护好,合理开发利用,就能实现草原的可持续发展. 大力兴修草原水利、放牧制度合理、不过度放牧、保护草原,营造防护林可以提高植被的面积,可以改善气候、涵养水源、防风固沙、制止水土流失,促进草原的可持续性发展,有利于草原环境的保护. 尽量超载放牧以发挥草原能力,会破坏草原生态平衡,加剧草场退化,沙化. 虽然我国部分地区由于急于发展,过度开采资源,超载放牧牲畜,使得草原植被遭到破坏,生物多样性锐减,引起了生态环境的急剧恶化.但是近年来为了促进牧畜牧业业发展,我国也采取了大量积极的措施如:培育良种牲畜加强良种的培育和对羊群群病害的研究;改善交通运输条件 修建了横穿草原的大铁路,牲畜很方便地运往全国各地加工,再装船外运;开辟水源,在草原上打了很多机井,保证牧草的正常生长及提供羊群群和人们的饮用水;种植饲料,以补充放牧时天然牧草的不足等来利用和改造自然因素、改善社会经济条件. 特别是依靠建立和分析数学模型来考虑客观因素,加强了模型的完整和全面化,也理性的对畜牧业进行了生态学上分析.

参考文献:
[1]张丽娟,孙福杰.一类生物种群增长的数学模型解的稳定性分析[J].长春工程学院学报,2006,7 (3):12-23
[2]朱吉祥,朱丽.多群落数学模型的稳定性分析[J].陕西师范大学继续教育学报(西安),2002,19 (1):9-14
[3]毛凯,李日华.种群竞争模型的稳定性分析[J].生物数学学报,2002,14(3):288-292
[4]陈兰荪.数学生态模型与研究方法[M].北京:科学出版社,1988.9
[5]王顺庆,王万雄,徐海根.数学生态学稳定性理论与方法[M].北京:科学出版社,2004,10
[6]陈塞琳,李守虔,张中奎.放牧绵羊春乏死亡的数学模型及数字预测[J].中国草原,1984,2:1-9
[7]段全恒,郭志明.一类具有迁移率和Holling-II 型功能性反应的时滞捕食–食饵模型[J]应用数学进展, 2014, 3:231-244
[8]DeeveyE.S.Lifetablesfornaturalpopulationsofanimals[J].Quart.Rev.Biol.1947,22:283-314
          
        
   Mathematical model and corresponding forecast of grazing

  Abstract:Current use of grazing systems exist serious unreasonable, severe system damage, take reasonable grazing management strategies, determine the appropriate stocking rates, so that the system output up to yet to achieve sustainable development. In order to stabilize and grazing continuing to provide a theoretical basis and method, grazing process, based on factors to find the relationship between the sheep, between grass and grazing, and to find ways to stabilize the ecological balance while maintaining grassland sheep growth, but also the actual situation for grazing , make the appropriate adjustments. differential equation model using differential equations stability theory,the stability of the equilibrium state, and drawing a conclusion by analyzing grazing to maintain a reasonable amount of grasslands prairie grass reaches maintaining ecological balance, and made effective grazing measures.
 
   keywords: sustainable; mutual benefit system; differential equations; equilibrium point; Stability
        
        
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: