摘要:电力行业在我国经济社会的发展中发挥和重要作用。社会的发展对电力工程建设和运行提出了更高的要求。为了满足人们的用电需求,国家加大了电力工程的投入,加强了智能电网技术的应用和优化,来提高电力工程建设的质量和效果。
关键词:电力工程;智能电网技术;应用
引言
随着社会的发展,能源安全的重要性愈加凸显,而电能作为重要的二次清洁能源,已成为生产生活所不可或缺的存在,电力系统的规模也更加庞大,电力工程技术也取得了跨越式发展。同时,电力系统自身也面临着外部攻击、自然灾害、设备故障等诸多威胁,存在着大面积停电的潜在可能,迫切需要建设更加优质的电网,实现更多的社会效益。
1智能电网的含义
现在社会的电网建设主要以智能电网为方向,着重于提高智能电网的建设水平和使用技术。技术人员也在进一步剖析智能电网的建设,为智能电网日后的发展提供技术支持,并且不断地将智能电网的实际应用和先进科技相结合。集成、高速、双向通信网络是智能电网建立的基础,在此基础上,将传感技术和测量技术融入电网建设当中,并且使用到自动化控制技术和能源电力技术。智能电网的建立目标是实现电力资源的高效性和安全性,进一步为现代科技的信息化和智能化提供坚实的后盾。智能电网和社会传统电网有不同的地方,智能电网是将电力流和信息流进行融合,在科学技术支撑的体系下,抵御和防控外来的攻击,并且可以及时修复电网出现的各种复杂问题,能够按照类别为电网提供稳定的使用接口,保证电力用户的信息安全。
2智能电网技术的主要性能
2.1兼容性
智能电网技术具备一定的兼容性,这意味着这一技术不受使用系统的影响,在任何平台中都能得到良好的应用,能够促进电力系统的创新发展,进一步提高智能电网系统的使用感受,提升对电网监控系统的技术应用。
2.2自我修复性能
智能电网技术的使用较为成熟,工作状态可实现一定的无人化。智能化电网技术拥有较高的自检性能,能够对自身系统的运行进行检修,依靠系统中的相关技术实现对自身问题的处理。
2.3灵活性与稳定性
智能电网技术能够对电力系统的运行进行监测,依托于大数据及计算机网络系统,在供电网络出现问题时能够及时对检修人员发出信号,并就问题的存在进行自行的修复,以保障电力供电的稳定性。智能电网相较于传统的人工技术,具有及时性与可见性,能够大大降低电网问题的发生率,提高电网运行的稳定性。作为智能化技术,其工作不受自然环境的影响。基于此,智能电网技术具有灵活性。
3电力工程中智能电网技术的应用?
3.1柔性交流输电技术的应用
在电力工程项目当中,应当要加强柔性交流输电技术的广泛运用。微电子技术以及电力技术是其中不可忽视的重要基础,同时,经过相关人员的深入研究和探讨之后,柔性交流输电技术,这一种新型的电力技术,可以切实保障交流输电得到科学合理的控制。在我国智能电网建设的过程当中,高压输变电是比较重要的一个方面,在建设智能网的过程当中,需要在电力系统当中引入大量清洁性的能源,同时要有相关工作人员采取有效的措施对相关能源实现有效的隔离。据此就可以充分得显示,电力工程技术和控制技术的相互融合,可以保障智能电网当中各方面的参数得到有效地调节和控制,切实保障智能电网运行的安全性、稳定性和可靠性。除此之外,在输电的过程之中,柔性交流输电技术的应用也能够在很大程度上的降低电能的损耗量,切实地保障电线输电能力的提升。
3.2直流高压输电技术
现代电网的发展不仅要趋向智能化,还要向着高压、超高压领域发展,对于改善我国区域能源分布有较好效果。由于直流高压输电有着稳定性高、不存在同步问题、线路造价低走廊窄、传输节能效果显著等优势,而在高压输电系统中获得较多应用,并已建成多条直流高压输电线路。换流器是其关键设备,能够实现直流输电和交流配电,为了降低换流器中谐波的危害,还要采用交流滤波器等设备。同时,在可控硅换流器的作用下,输电线路的功率能够进行快速灵活的调节,甚至实现潮流翻转,有利于电网事故状态下的紧急支援。直流高压输电技术已取得很大发展,但还需继续研发,以弥补当前直流传输技术的不足。
3.3新能源转换中技术应用
现阶段在实际的智能电网建设过程中,为了有效地保障电力工程技术的合理应用,相关电力企业必须要加强新能源技术的合理运用,新能源技术的主要表现为可以在很大程度上减少能源的消耗,最大限度地降低碳的排放,促进智能电网更快更好地发展,有利于智能电网的经济效益和社会消息相互融合,相互促进,不仅提高相关电力企业的经济效益,同时还对社会做出更大的贡献。在实际的智能电网建设过程中合理的使用新能源,可以保障智能电网的节能减排,同时相关电气技术人员还要在使用新型的能源转换技术以及先进的设备,有效地促进电能的科学转换。目前大部分国家已经普遍的应用新能,包括风能、太阳能等等,因此相关电力企业以及电力部门管理人员必须要重视电网建设中并网技术,加大资金的投入,切实保障电力工程技术的并网技术合理运用,这样才能保障智能电网安全稳定的运行。除此之外,在电能的转换技术方面,我们国家和西方发达国家还有很大的差距,在能量转换方面还有很大的进步空间,同时相关的转换技术还需要进一步完善和创新。在实际的智能电网建设过程中,合理地应用能量转换技术可以最大限度地促进电力工程技术的应用,具有非常重要的现实意义,除此之外,为了促进能源转换技术的合理运用,电力相关部门必须要将强相关工作人员的素质教育以及能力培训工作,必须要培养高素质高能力的电气技术人才,从而为智能电网的建设作出重大贡献,促进智能电网建设工作更快更好的进行。
3.4网络拓扑控制技术的应用
智能电网实际运行过程中借助无线传感器能够有效控制电路,而其中最为关键的技术则是网络拓扑控制技术。通过网络拓扑结构的建设可以有效控制路由协议,为网络生存时间提供保障。此外,受无线传感器所形成的电磁波影响,智能电网中的所有节点都采用大功率通信,那么各节点的干扰程度将会越来越大,其通信效率也会随之降低,且节点间产生的能量消耗也会造成不必要的能量浪费。针对此问题,可以采用网络拓扑控制技术予以解决。但智能电网中各节点的功率也不可太小,否则将影响网络的覆盖率。
结语
随着当前城市化和工业化不断地发展,我国对于 能源的需求量越来越大,电力工程技术的发展直接影响智能电网的发展水平,电力技术的高低是智能电网建设的关键点。为了确保智能电网的全面建设,必须提高电力工程技术,采用最先进的研发技术,为电网建设培养专业性的技术人才。根据我国的实际国情节约资源,建立资源的循环使用系统,在促进社会发展基础上,提高企业的经济效益,并且保证电网运行的安全和稳定,保证社会电力资源使用的速度,为经济建设提供坚实的后盾。
参考文献
[1]孔菁,李广凯,王庆红,等.智能电网技术在电力系统规划中的应用与发展趋势[J].科技创新与应用,2018,(27):42,46
[2]黄溢.智能电网建设中电力工程技术的应用对策[J].数字通信世界,2019(08):173.
[3]段斯,邱议漩.电力工程技术在智能电网建设中的应用研究[J].电子世界,2019(7):176-177
[4]黄溢.智能电网建设中电力工程技术的应用对策[J].数字通信世界,2019(8):173.
[5]杨轶.电力工程技术在智能电网建设中的应用探究[J].硅谷,2019,7(1):116-117.