摘要:近年来,社会的发展与进步速度越来越快,人口也越来越多,社会上的用电量也在逐步的增加,这也在一定程度上加大了发电厂发电的压力,目前,电厂锅炉大多数都处于超负荷运行的状态。电厂锅炉长时间处于超负荷运转的状态,会损害设备的功能,减少其使用的寿命,进而导致生产效率的降低,情况严重的,还会威胁技术人员的生命财产安全。热能技术近年来已广泛应用于电厂燃料补给,它在提高锅炉风机的安全性和稳定性的同时,还可以提高锅炉运行的效率。
关键词:电厂锅炉;热能动力;运行效率
引言
发电厂生产具有高耗能、高污染特征,在新形势下,如何才够使电厂锅炉使用过程中的污染减少,提高能源利用率成为需要克服的关键问题。同时,电厂锅炉应用在热能动力中实际作用日渐凸显,不断通过创新技术,将锅炉使用效率提高,将能耗减少,可使电厂获得更高的经济及社会效益。
1电厂锅炉及热能动力工程概述
1.1电厂锅炉的构成
电厂锅炉对于电厂的发展来说是至关重要的,电厂的支柱设备就是锅炉。电厂的运行和发展直接由电厂锅炉运行的效率所决定。发电厂使用的大多数发电站室由两部分组成,即外壳部分和燃气锅炉控制部分,外壳部分下面主要由底壳和面壳度组成。其主要任务是加强燃烧器的稳定性,防止设备被风和灰尘污染,实现设备的综合保护。在过去,燃料的控制主要是手动的,因此,对于温度的把控不是十分的精准,在这样的情况下,就会导致数值出现偏差。近年来,随着科学技术的飞速发展,电子控制逐渐取代了手动控制,不仅提高了操作精度,而且控制效果也显著提高了。。
1.2热能动力工程概述
所谓的热能动力工程,是指由机械工程学及跨热能动力工程这两门学科共同支持下的一类工程,应用中实现了机械能与热能的转化利用,能够为设备的正常运行提供动能。同时,实践中通过对人工智能、低碳环保理念等要素在热能动力工程中整合利用的思考,有利于降低电厂锅炉能耗,为其高效运行及电厂生产效益增加等提供专业保障。因此,在促进热能动力工程发展的过程中,应深入思考电厂锅炉的应用,促使这类工程的潜在应用价值得以充分体现。
2电厂锅炉应用在热能动力中的发展的意义
热能动力工程在电厂锅炉广泛运用下得到大力发展,比起过去的燃气锅炉,采用全自动化方式进行生产,将人力成本大大降低,极大提高了生产效率。此外,自动化操作系统下,可以将各类操作风险消除,比如“漏气”“漏油”等,能将人为误差减少,为节能生产创造了良好条件。目前,大气污染已经非常严重,对电厂所产生的各项污染进行控制已经迫在眉睫,尤其是二氧化硫、烟尘这样的较为严重的污染物,会造成较严重的大气污染,更会破坏生态环境。由此,对锅炉生产结构优化改进,将锅炉使用性能提升,对减少污染。
3用热能动力提高电厂锅炉的运行效率的措施
3.1将能量转换率提高
能量转换是电厂锅炉运行的基本原理,即机械能与热能间的互相转换,是发电的重要能量来源。由此,将机械能与热能间转换效率与效能提高非常关键。工作人员要在现有技术基础上,对效能间变化进一步加强,提升电厂锅炉的使用效率。1)充分学习有关热能动力的相关理论知识,多分析有关的案例,对于热能动力的基本原理有效熟悉,不断涉猎最新的知识、技术,将相关计算结果真正运用到理论基础当中,将最为准确、符合生产实际的计算公式得出,提高转换效能。2)锅炉实际运行中,优化管理好设备零部件,定期记录电厂锅炉实际运行中发电量,并与预期的发电量进行比对。
3)实际计算结果要与理论数值对照,保证实际运行质量,在多检修设备的同时,还要对设备做出更全面化的管理。对于检修中出现问题的锅炉,及时对损坏的零部件设备更换,保证锅炉运行更为持久,使生产更加连续、稳定。
3.2燃烧控制技术
在热能动力工程的支持下,能够实现对电厂锅炉能耗问题的高效处理,满足生产活动开展中的节能降耗要求。因此,在促进电厂与热能动力工程科学发展、提升锅炉科学应用水平的过程中,应注重与之相关的燃烧控制技术应用。具体表现为:(1)加强空燃比里连续操控技术使用,借助热电偶检查出对应的数值,把探测的数值传递给PLC,实现对电厂锅炉运行中燃料燃烧过程的科学控制,最大限度地提高能源利用效率,促使锅炉设备能够处于高效的运行状态,为热能动力工程发展中带来更多的促进作用;(2)注重双交叉先付操控技术使用,利用温度传感器将需要进行精确测量的温度转变为电信号,并根据实际测量温度和期望达到的温度两者数据之间的偏差值,在PLC的支持下,采用自动化控制的方式改变燃料和空气流量阀门的闭合,控制好空气与燃料之间的比例,确保电厂锅炉运行中的能源利用状况良好性,减少燃烧过程中的热量损失,给予电厂效益状况改善、热能动力工程应用水平提升等相应的支持。
3.3转换思想推动设备高效运转
在提高电厂锅炉运行效率的战略中,除了全面理解和掌握热能技术的相关理论外,还应转变思路,摒弃传统的能耗方式和所依赖的相关概念。以现阶段发电厂的发展需要为基准,从技术改造、技术创新到资源利用,使得相关概念被广泛地转换和更新。因此,从当前阶段来说,观念的转变应主要基于两个方面:技术创新和资源利用。一方面,发电厂必须更新和改进比较落后的技术。例如,随着社会用电量需求的不断增加,电站规模逐渐扩大,导致大多数生产设施超负荷运行,尽管这种压力可以通过风机出入口挡板的变化和水泵出口阀门等措施来缓解,但随着时间的推移,风机出入口和水泵的正常运行会受到损害,从而降低设备的效率。针对这一问题,电厂技术人员可以通过完善变频调速技术来解决。实践证明,在主体系统中加入变频控制技术,可以有效地适应辅助系统的各个部分,使其工作状态达到最佳,提高发电厂锅炉的运行效率。另一方面,电厂的管理人员以及相关的技术人员,必须要树立节能减排的思想。以重庆市某电厂为例,电厂管理人员对电厂锅炉进行了综合改造,进一步完善了节能技术,确保了主系统的节能效果不再降低。经过改造后的电厂锅炉不仅提高了能源效率,而且运行效率也得到了显著的提升。
结束语
总之,发电厂的运行效率的提高是当前最为重要的事情,特别是在能源短缺和社会用电量持续增长的今天,已经引起了人们以及相关技术人员的高度重视。首先,本文简要介绍了发电厂锅炉的组成。在此基础上,探讨了如何通过热能动力这一项技术,使得发电厂的工作效率提高。在社会发展的新形势下,提高发电厂锅炉运行的效率是本文分析过程中的首要任务,说明了将热能的相关原理和技术应用于电力的改进和管理,可以显著提高锅炉运行的效率和质量。因此,在未来电力行业发展的过程当中,不断优化和改进热能技术,可以逐步提高发电厂锅炉的运行效率,这对促进中国能源工业的发展起到重要作用。
参考文献
[1]张航航.电厂锅炉应用在热能动力工程中的发展[J].科技风,2020(08):168.
[2]廉博伟.电厂锅炉利用热能动力提高自身的运行效率[J].中外企业家,2020(01):141.
[3]于焱.热能动力工程在电厂锅炉中的应用研究[J].中外企业家,2019(36):95.
[4]任瀛.电厂热能动力锅炉燃料及燃烧特点分析[J].科技风,2019(24):193.