摘要:火电厂是生产电能的重要场所,热工系统在生产过程中具有不可替代的作用,为提升热工系统的运行稳定性,可对DCS控制系统进行应用。基于此点,本文从火电厂热工自动化DCS控制系统的应用分析入手,展望了火电厂热工自动化DCS控制系统的发展趋势。
关键词:火电厂;热工自动化;DCS控制系统
目前,电厂热工自动化技术已经利用新型自动化技术取得了巨大发展。主要表现在两个部分,一部分,在机组中占据主要地位的DCS系统使得原有控制结构出现巨大改变,另一部分,随着火电厂运营系统及总线技术的发展,热工自动化控制系统的完善也充满生命力。
1.火电厂热工自动化概述
(1)通过对信息技术、自动化技术及计算机网络等要素的配合使用,可构建出功能强大的火电厂热工自动化控制系统,从而实现对相关生产活动开展过程的实时监测,消除其中可能存在的安全隐患;(2)通过对DCS(分布式控制系统)与PLC(可编程控制器)的配合使用,可增强火电厂热工自动化的实践作用效果,并且提升与之相关的自动化控制系统潜在应用价值,从而实现火电厂的生产成本最低化及生产效益最大化的长远发展目标;(3)在火电厂热工自动化控制系统应用的过程中,应根据实际情况,在该系统中设置好高级算法模块,促使该系统的实践应用水平得以提升,实现对火电厂生产计划推进过程的有效控制。
2.热工自动化DCS控制系统在电厂的应用
2.1DCS系统的应用
DCS系统的过程控制级一般由分散的现场控制站、数据采集站等就地实现数据采集和控制,并通过数据通信网络传送到生产监控级计算机。生产监控级对来自过程控制级的数据进行集中操作管理,如各种优化计算、统计报表、故障诊断、显示报警等。DCS系统的控制算法丰富,集连续控制、顺序控制和批处理控制于一体,可实现串级、前馈、解耦、自适应和预测控制等先进控制,并可更方便的加入所需的特殊控制算法。我国的DCS产品和技术在高端工业自动化领域不断打破国外垄断,其控制核心技术,已在600/660/1000MW超临界机组获得广泛应用。“炉-机-电-辅-仿”一体化DCS控制使得电厂生产层数据流畅、监控便利、管理精细,检修维护方便;以非线性预测控制、状态重构、内模控制等先进算法为基础的超超临界机组协调控制方案,能够有效提高电厂机组控制与运行性能;通过先进控制与优化、生产过程优化,可以改善机组参数运行品质、优化运行方式与定值,提高机组效率,降低机组供电煤耗,减少排放生成,实现电厂节能减排。以世界首套“1000MW二次再热超超临界机组控制系统”为例,由北京国电智深控制技术有限公司自主研发,是一套涵盖电厂主控、辅控、公用及仿真机系统的智能控制(DCS)系统,综合运用常规控制、预测控制、非线性控制等技术形成了主蒸汽温度/再热蒸汽温度控制、机炉协调控制、三级旁路控制、安全运行保护控制等控制策略;其自主研发的机组自动起停控制系统(APS)实现了机组启停过程的全程自动化;基于二次再热机组的静动态特性和运行工艺原理,建立了整套机组的仿真模型和高精度、全激励仿真系统平台,使控制策略设计、调试、仿真试验、运行人员的操作培训成为可能。该DCS系统符合清洁能源高效燃煤技术“高效率低排放”的行业发展方向,采用多种先进的现代控制技术解决被控参数多,交叉耦合性强、大时延大时滞突出、安全性要求高等控制难题。现已成功应用于世界首台二次再热1000MW超超临界发电机组江苏泰州电厂二期3、4号机组。
2.2重要参数测量
智能仪表、智能设备的出现,三维可视化技术的发展和大数据分析技术的应用为电厂生产过程的智能化监视、故障在线诊断和实时数据的智慧化分析提供了技术支持。(1)先进在线测量技术应用。烟气成分在线测量系统。将SCR入口和出口CEMS系统中的CO、NOx浓度、O2含量等参数的实时测量数据送到优化控制器系统,为智能控制提供可靠测量参数。(2)重要参数软测量。测量计算结果应用到相关控制回路中,可降低机组煤耗,提高运行效率。(3)锅炉CT。锅炉CT技术根据声学测温原理,对炉膛温度进行非接触式测量,实现炉膛温度场的可视化和在线检测,声波测点布置对锅炉本体不造成任何破坏,充分利用锅炉现有的观火孔和短吹预留孔。
2.3自动控制
自动控制是实现生产过程的自动启停、运行控制以及生产经营人员行为标准化的关键。智能化的控制技术可以提升电厂机组协调控制响应能力和精度,覆盖全过程各工况设备和工艺系统的自动投退,实现机组及全程自动控制、自启停和负荷切换,达到闭环优化、少人高效运行的目的。以其中几个智能控制算法为例。(1)基于锅炉效率最优的风燃比优化。锅炉燃烧过程中保持最佳风燃比是提高锅炉效率和经济性的关键措施。优化氧量定值,以锅炉效率最高为优化目标,结合锅炉运行工况中热效率与空气系数的特定关系曲线,利用最优控制理论,寻求不同负荷状态下的最佳风燃比,实现锅炉经济稳定燃烧。(2)制粉系统预测控制。正压直吹式制粉系统是一个典型的多变量非线性时变系统。各控制量和被控量之间存在着严重的耦合关系,控制量扰动大,被控量滞后严重,基于经典PID设计的控制方案难以实现制粉系统的解耦控制。(3)主蒸汽温度预测控制。应用主汽温预测控制功能,提高锅炉汽温控制的鲁棒性,提升汽温控制精度,实现锅炉变负荷情况下,减少汽温波动幅度,延长过热器设备寿命,降低锅炉爆管风险,节约机组运行维护费用。同时减少减温水喷量,提升锅炉运行效率,进一步降低机组供电煤耗。
3.火电厂热工自动化DCS控制系统的发展趋势
3.1与PLC融合
PLC是具有可编程功能的存储器,可对系统内部程序进行存储,并对运算指令进行快速执行。火电厂在对DCS控制系统进行应用时,可将DCS与PLC进行有机融合,这样能够使DCS系统具备逻辑控制功能,从而使顺序控制过程得以优化。
3.2引入IGDS
火电厂归属于工业领域的范畴,IGDS是目前最为先进的工业图形显示系统,在DCS系统中引入IGDS,可使人机交互界面的整体效果获得大幅度提升,不但显示速度可以变得更快,而且还能使画面有所增多。
3.3融入先进的控制理论
火电厂的生产流程具有复杂性和多样性的特点,尤其是热工自动化系统,若是采用简单的控制方式,很难达到预期中的控制效果。为满足热工自动化的需要,DCS控制系统必须具有更加精准的控制,而且操作过程也要尽可能简单、流畅。为实现这一目标,可在DCS系统中引入先进的控制理论,对系统进行优化,由此可为DCS系统的应用与发展提供更广泛的空间。
结束语
热工自动化系统的发展是高速化、智能化、透明化和一体化趋势。近几年,科学技术的高速发展促使了热工自动化控制的改善,一方面作为机组最为主要的DCS系统在控制结构中出现了巨大的变化,另外,随着电厂监控和管理系统的提高以及现场总线技术的逐步普及,给热工自动化系统注入了新的活力。
参考文献:
[1]李星宁.火电厂热工自动化控制的应用实践及发展方向[J].科技经济导刊,2017(22):28.
[2]王伟.火电厂热工自动化设计中的节能减排[J].通讯世界,2017(12):208-209.
[3]高小岚.火电厂热工自动化设计中节能减排分析[J].中国高新区,2017(12):105.
[4]欧阳刚.火电厂热工自动化控制新技术发展与建议探讨[J].科技风,2017(10):211.
窗体底端