李杰
广西省柳州市鱼峰区雒容镇雒容第二中学 545616
摘要:随着我国教育事业的不断发展与进步,在初中数学教学中,类比思想能有效提高学生的学习效率。培养学生的自主学习能力,加强学生学习数学的积极性。教师要改善传统的教学模式,不能让学生仅仅掌握数学基础知识,还要开发学生的数学思维能力,让学生在遇到问题时能自主解决。因此,在初中数学教学中应用类比思想法,能帮助学生快速掌握数学知识,提高初中数学教学的效率与质量。
关键词:初中数学 类比思想 应用 策略
引言:学生在初中阶段对数学这门学科理解的不够透彻,类比思想可以加强学生的数学推理能力,培养学生的探究能力,也是数学中最重要的思想方法之一。可以帮助学生解决未知的数学问题,感受数学思想方法的奇妙之处。引导学生自主探索数学知识。培养学生的创新思维能力。将已经掌握的数学知识迁移到新的数学问题中,灵活运用解题方法。提高初中数学教学的效率,促进我国教育事业的全面发展。
一.在初中数学教学中应用类比思想的策略
(一)通过类比思想提高对数学概念本质的理解
初中数学教材中包含了多种数学概念,学生经常将一些类似的概念混淆,不能理解数学概念的本质含义。严重影响到学生学习数学知识的效率,因此,教师要培养学生掌握理解数学概念,通过类比思想让学生深入了解数学知识。改善传统死记硬背的学习方式,让学生理解数学概念本质后灵活运用到解题中,有效提高学生的学习效率。例如:在对人教版数学七年级下册《立方根》进行教学。教师要让学生理解立方根的概念,如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根。也就是说,如果x3=a,那么x叫做a的立方根。在学生掌握数学概念的本质后在教学中应用类比思想,在实数范围内,任何实数的立方根只有一个,在实数范围内,负数不能开平方,但可以开立方。在复数范围内,任何非0的数都有且仅有3个立方根,它们均匀分布在以原点为圆心,算术根为半径的圆周上,三个立方根对应的点构成正三角形。让学生灵活利用平方根与立方根解题,这就是两个很相近的概念,很容易让学生引起混淆而造成解题错误。因此,教师可以引导学生利用类比思想,掌握数学概念的本质。对数学题目进行推论分析,提高学生的数学思维能力,加强类比思想应用到初中数学教学中的有效性。
(二)通过策略类比提高学生学习效率
在数学解题的过程中,类比思想起到关键性作用,教师可以引导学生开展策略类比的运用。提高学生的学习效率,培养学生的数学思维能力。例如:在对人教版数学七年级下册《坐标方法的简单运用》进行教学。坐标是数学名词。是指为确定天球上某一点的位置,在天球上建立的球面坐标系。有两个基本要素:基本平面,由天球上某一选定的大圆所确定,大圆称为基圈,基圈的两个几何极之一,作为球面坐标系的极。主点,又称原点。由天球上某一选定的过坐标系极点的大圆与基圈所产生的交点所确定。数学上坐标的实质是有序数对,平面概念用来表示某个点的绝对位置,延伸到游戏中用来表示游戏事物的平面位置。教师先让学生理解数学坐标的基本概念,之后再让学生理解如何简单的运用坐标方法。教师可以结合日常生活中进行举例,学生们假期会跟着家人出去旅游,出门在外都离不开地图,为出行带来了很大方面,教师可以通过地图让学生表示地理位置。通过灵活的策略类比思想让学生理解数学知识,不依靠传统的死记硬背学习方式。能有效激发学生的学习兴趣,提高类比思想应用到数学中的实用性。
(三)在实际教学中运用类比思想
数学解题的过程中,多数问题思路都是相似的,学生可以运用类比思想进行解题。提高学生的解题效率,因此,教师要开发学生的数学思维能力,让学生在解题的过程中运用多种解题方法,理解数学知识之间的关系。教师可以在教学过程中设置好数学题,让学生思考多种解题方法,例如:在对人教版数学七年级下册《二元一次方程组》进行教学。二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。每个方程可化简为ax+by=c的形式。教师要让学生明白二元一次方程租的定义,由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组。一般地,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。教师可以按着数学内容设计题目,让学生在解题的过程中运用类比思想,利用数的整除特性结合代入排除的方法去求解。学生在解题思考的过程中学会用加减消元法、代入消元法等多种解题方法。教师要培养学生的类比意识,让学生从数学的多个角度去思考问题。提高初中数学教学中应用类比思想的效率,促进我国教育水平的进步与发展。
二.结语
在初中数学教学中应用类比思想,可以激发学生的学习兴趣,加强数学教学的效率与质量。培养学生自主学习探究数学知识,突出学生在教育中的主体地位。让学生轻松掌握数学知识的同时,灵活运用数学概念思想。培养学生的数学思维能力,提高学生的数学各项综合素质能力。
参考文献:
[1]阮华春.运用类比思想,引领初中数学教学[J].中学数学,2014( 10) .
[2]陈苍生.类比推理在初中数学教学中的运用探讨[J].黑河教育,2016( 10) .