张晓军 马海明 黄强
国网新疆电力有限公司阿勒泰供电公司 新疆阿勒泰市 836099
摘要:电气设备处在电场及高电压的环境中,容易使绝缘性能不断下降,造成设备损坏。为提前消除这个隐患,可以使用局部放电带电检测技术判定设备绝缘状态。
关键词:局部放电;带电检测;变电站检测
电气设备处在长期运行或非正常运行情况下或因制造、安装缺陷,将可能发生内部绝缘的某种劣化,尤其在电场及高电压的环境中,容易使得绝缘性能不断下降,严重时可能造成局部放电,乃至出现绝缘击穿和损坏。如果变电站配电设备发生损坏,会造成大面积生产停电事故,对公司造成巨大损失。所以,掌握配电设备绝缘情况对于准确判定设备状态非常重要。
1常用的局部放电带电检测方法
1.1高频电流检测法
高频电流检测法是一种先进的带电检测技术。该技术与传统脉冲电流法的原理相似,均为非电接触式检测方法。在利用高频电流检测法进行局部放电检测时,有效应用高频罗氏线圈,发挥其测量阻抗的作用,然后获取耦合电路中的陡脉冲电流信号,最终得到准确的局部放电结果。高频电流检测法的最大优势是等效阻抗小,可直接应用在接地扁铁或者试品接地线上,从而维护其他设备的正常运行,避免带电检测对电力系统运行造成其他不良影响。例如,在现实检测过程中,高频电流传感器能够接收到局部放电源发出的信号,并且通过带电监测仪器显示出来。
1.2超高频检测法
当电力系统发生局部放电现象时,系统会产生一种高频率电磁波。这种电磁波在自然空间中的衰减速度虽然相对正常,但是在金属箱中会变慢,进而逐渐从金属箱的缝隙部位传播出来。这种情况下,只要对这种电磁波进行带电检测,就可以判断电力变压器是否存在局部放电情况,并且有效诊断电力变压器的绝缘状态。超高频检测法进行带电检测主要是有效利用超高频传感器。这种传感器主要分为两种类型:一种是可以安装在设备内部的油阀式UHF传感器;另一种是可以安装在设备外部的外置式UHF传感器。
1.3超声波检测法
电力变压器在使用的过程中,局部放电使得绝缘油中产生气泡,气泡之间不停的互相撞击,就会出现超声波现象。在电力变压器外部安装超声波传感器可以检测超声波信号。使用超声波检测法,不会影响变压器的正常使用。超声波信号强说明局部放电量大,反之超声波信号弱说明局部放电量小,所以,使用超声波检测法还可以检测量局部放电的大小。
1.4光学检测法
变压器发生局部放电时,变压器油会产生发光、发热的现象,所以可以采用光电探测仪器对这些光辐射进行检测,通过光信号的数据来判定局部放电特征,光学检测具有抗干扰能力强、灵敏性高等特点。光电探测仪器取得的光辐射信号与传统脉冲电流检测的放电量相似,所以能够判断放电的程度。光学检测法包括使用普通光学传感器以及荧光光纤检测,普通光学传感器只能从设备的外部进行检测,但无法伸入设备内部;荧光光纤检测技术能够对设备内部的关键部位进行检测。相关研究将光学检测与脉冲电流检测进行了对比,结果显示光学检测获取的光信号能够较好地对局部放电的次数和强弱进行反映,得到的数据接近真实。
这是检测变压器局部放电的一种新的技术和思路,其中有很多专业性的问题需要进行研究解决,如成本问题、影响检测信号的因素等。
1.5油中溶解气体检测法
电力变压器在使用的过程中,局部放电时,因为绝缘板和绝缘油的老化,就会生成可以溶解在油中的气体,比如二氧化碳、乙炔、甲烷、一氧化碳、乙烷,还有氢气等。通过检测油中的气体类型、含量多少等,就能确定电力变压器有没有发生过局部放电。这种检测方法受到的干扰少,可以带电检测,也可以离线检测,而且操作简单。
2变电设备局部放电带电检测技术
2.1地电波检测
当开关柜的绝缘层中出现局部放电时,就会产生电磁波,该电磁波是在无线电的频率范围之内的,其中有一部分电磁波会沿着间隙传播出去,一旦传播出去的电磁波遇到开关柜的接地金属外壳,就会立即产生一个电压大概在几毫伏到几伏之间的瞬态接地电压,这种瞬态接地电压从产生到消失存在的时间并不长久。因此,当开关柜处于工作状态时可以通过检测瞬态接地电压来检测设备的局部放电活动。根据我国电力检测的有关规定,瞬态接地电压的检测周期应该按以下标准:如果变电设备为新设备,根据规定应该在设备投入运行一星期之内对其进行瞬态接地电压的检测;设备在运行过程中也应该按规定标准进行检测,一般在半年到一年的时间内对设备进行一次检测;如果设备运行出现故障或运行不良时也应该检测一次。另外,在检测的过程中应该特别注意,每一次检测对于同一站的所有开关柜所使用的检测仪器应该相同。当采用地电波的方式对变电设备进行检测时,判断变电设备是否存在放电现象的一个非常重要的依据便是放电脉冲数,在设备运行状态良好的情况下,2s之内放电脉冲数在50~500个之间,如果检测时发现放电脉冲数超过1000时,就应该及时采取相应的措施加以解决,防止危险发生。
2.2超声波检测
声波的产生也是开关柜局部放电的明显特征。开关柜在局部放电的过程中产生的声波是频谱比较宽的声波,从几十赫兹到几兆赫兹不等,跨越性比较大,通常情况下人的耳朵可以听到低于20kHz的信号频率,如果信号频率高于20kHz那么人耳是听不到的,这时就需要借助超声波传感器对信号进行接收。超声波传感器的工作原理是首先利用超声探头对信号进行接收,经过一系列的处理之后以声压的形式反映出来,与此同时再将其转换成人的耳朵可以听到的信号频率。因此,工作人员可以通过声音信号来对设备是否存在放电问题进行系统的分析与判断。另外,根据我国电力检测的有关规定,超声波的检测周期应该按以下标准:如果变电设备为新设备,根据规定应该在设备投入运行一星期之内对其进行超声波的检测;设备在运行过程中也应该按规定标准进行检测,一般在半年到一年的时间内对设备进行一次检测;如果设备运行出现故障或运行不良时也应该检测一次。另外,在检测的过程中应该特别注意,每一次检测对于同一站的所有开关柜所使用的检测仪器应该相同。当采用超声波的方式对变电设备进行局部放电检测时,检测依据主要是工作人员从耳机中听到的声音信号,超声波检测技术实际上就是对声音信号的检测,对耳机中检测的声音信号进行判定,从而判断出变电设备是否存在放电问题。
总结:局部放电带电检测技术作为一项提前发现隐患的先进技术,利用暂态对地电压与超声波检测相结合的方式可以快速定位出局放位置,从而监控电气设备内部绝缘状况。利用局部放电技术,通过定期复测、问题跟踪等,能够实现缺陷的快速消除,并结合日常检修、红外成像技术和铁芯接地电流技术能够很好的保障电气设备的安全稳定运行。
参考文献:
[1]冯义,刘鹏,涂明涛.局部放电测试新技术在10kV配电设备状态监测中的应用[J].电世界,2010(8).
[2]欧阳进,张蓝宇,邹磊,等.TEV、UT、UHF技术在开关柜局部放电检测中的应用[J].宁夏电力,2017(1).
[3]陈庆祺,张伟平,刘勤锋,等.开关柜局部放电暂态对地电压的分布特性研究[J].高压电器,2012(10).