国网山西送变电工程有限公司 山西太原 030000
摘要:鉴于我国已经建成全球规模最大的超高压和特高压电网,彻底弥补了电力跨区配置的电网基础设施短板,并且为清洁电源并入电网和跨区消纳提供了完善的基础设施,不仅克服我国电力负荷中心和能源基地的区域布局不协调,而且有益于缓解日益严峻的能源利用率低下和环境污染问题。本文从清洁能源接入对城市电网的发展进行分析研究,分析城市电网造成的影响,以供业内人士参考借鉴。
关键词:清洁能源;城市电网;对接
1我国清洁能源发电的利用
1.1水电
现阶段,我国电力发电的主要类型之一仍然是水力发电。但是我国水资源分布不均匀,且质量不高,水力发电会受到季节性丰水期枯水期的影响,稳定性不高,调节能力较差,因此我国利用水力发电的程度不高。在我国,三峡水电站有效地缓解了我国电力供应紧张的问题。从水力发电来看,水力发电无污染、无能源消耗,且具有可循环利用的特点,因此值得进一步开发利用。
1.2太阳能发电
据不完全统计,我国太阳能资源十分丰富,我国能接收到的太阳能辐射总量约为930~2330(KW•h)/(m2•a)。现阶段,我国太阳能发电技术取得了相当大的成就,而且光伏发电技术已经具有了一定的规模,我国许多城市已经建立起太阳能电池的专业生产厂家,其中在西藏7个没有水、没有电的县域内已经全部建立起光伏电站。
1.3风能发电
从1996年开始,我国建立的风电场出现跨越式发展。据不完全统计,我国风能资源可开发利用量为253GW,其中在内蒙古、新疆以及东南沿海一些地区,有效的风能密度通常大于200W/m2,有效的风力时间均超过了70%。据统计,截至2004年底,我国14个省、市、自治区已经建立起43座风电场,累计运行风力发电机组1291台。而江苏如东100MW风电场、如东150MW第二风电场、东台1000MW 风电场在2015年将全部投入运行。
1.4海洋能发电
我国海洋能资源丰富,其中大陆的海岸线长达1.8万千米。根据全国沿海普查资料,全国可开发的潮汐能装机容量为21.73GW,年发电量为61.9TW•h;浙闽两省为高潮差区,可开发装机容量1924GW,年发电量55TW•h;全国沿海波浪能资源理论平均功率为12.85GW,潮流能14GW。此外,我国还有丰富的温差能和盐差能资源,理论发电装机量近15TW。目前,我国在运行发电的潮汐电站有7座,总装机容量5930kW,年发电量10210MWh最早的沙山潮汐电站于1961 年建成发电,装机量40kW,最大的浙江江厦潮汐电站于1980年开始发电,装机量3200kW,年发电量约60GW•h
2清洁能源接入对城市电网的影响
2.1清洁能源对馈线稳态电压的影响在电力系统中,电压的调节通常是将通过电容器投切或者将有载调压变压器的分接头调压改变来实现的,而其他的动态无功调节设备就很少配置。如果在城市电网中接入清洁能源的比例较大,那么电网电路的负荷潮流容易受到清洁能源发电站功率波动的影响产生较大的波动,这样就加大了调正电网正常运行电压的难度。如此一来,在原有调压方案不变的情况下,新能源发电站接入以后的城市电网的电压要求就难以得到满足。当城市电网中没有接入清洁能源的时候,配电馈线的节点电压都在正常限制的范围内,而当清洁能源接入城市电网低压侧时,因为变压器功率减少,馈线后端节点的电压就会越限。
如果按照城市电网原有的调压方案就可能降低使用户侧电压水平,因此在清洁能源接入城市电网之后的调压方案必须要进行改革。当清洁能源发电站与主变电站距离较远的时候,馈线电压会上升很高。由于在最小运行方式下,新能源发电站容量相对于负荷的比例大,使得电站上游输送的功率减小甚至出现逆流,从而使得最小运行方式下,新能源发电站不同位置并网的馈线电压分布,与最大运行方式相比馈线电压有着较大的上升。可见接入位置分散时的电压曲线比电源集中时电压曲线要平滑,布置越分散则馈线末端节点的电压也被抬的越高。
清洁能源的输电线路阻抗、发电穿透功率以及接入电网短路容量等3方面因素,共同决定了清洁能源发电站与城市电网公共连接点的电压稳态变化。以某地区50MW风电场公共连接点电压为研究对象,可以从其输出功率波动的实测曲线中看出来,城市电网在一定程度上受到风电场功率输出的支撑,且城市电网的电压支撑强度会随着风电场的有功输出变大而变大。据调查,该风电场的无功输出基本上是在0.5~1.0Mvar范围内,城市电网电压的稳态也会受此影响。
2.2清洁能源对电网电压波动和闪变的影响
清洁能源接入城市电网之后,其机组的开机停机、补偿电容器投切以及能源波动变化,都会造成城市电网电压的波动以及闪变。由此可以看出来,城市电网电压的波动以及闪变主要是由于受到清洁能源发电站输出功率波动而引起的。在风力发电过程中,风速的变化是造成风电场输出功率波动的主要原因,换句话说,城市电网电压的波动以及闪变与风速的变化呈正比的关系。将风电机组中的恒速定桨距与变桨距在切换过程中产生的电压波动以及闪变进行分析,并研究了电压波动以及闪变在持续运行过程中的状态,结果发现电压波动以及闪变在切换过程中比持续运行过程中要大,而在恒速变桨距的风电机组之间得出的结论却是与此相反的。
2.3新能源发电对电网频率的影响
在电力系统的运行中,很少会出现频率异常的状况。在光伏发电并入城市电网之后,在光伏发电容量较小时,即便是多台机组进行投切,也并不会出现城市电网频率越限的情况。但是,随着城市电网中并入的清洁能源发电站容量增大之后,城市电网的频率会受到清洁能源机组出力时随机性的影响而出现波动,这无论是对于用户还是城市电网本身都会产生不良影响。将城市电网受到风电场功率波动的影响转变为一个等效传递函数,也就是风电场输出功率波动以及火电组转速变化的传递函数,以此为依据将系统频率受到风电功率波动影响的评估模型建立起来,由此得出城市电网在火电机组的自动发电控制系统功率为001~1.0Hz时所受到的影响最大。因此,在大量的清洁能源接入城市电网的时候,要对清洁能源发电时产生的波动性以及间歇性进行充分地考虑,并将清洁能源发电的功率预测以及电网运行的调度相互结合起来。
3结束语
面对不断枯竭的传统能源,人类生存发展对于能源的需求却仍然在不断地增长。电力资源作为现今能源的最大使用者,其能源消耗是十分巨大的,因此新能源革命已经在全球范围内开始倡导。清洁能源包括风能、太阳能、海洋能、生物能,这些能源不但没有污染,而且是取之不尽、用之不竭的。人们对于电力的需求已经导致能源巨大地消耗以及负荷,因此在智能电网中接人清洁能源是现如今电力行业可持续发展的方向。但是,当前清洁能源接入城市电网过程中还存在着许多的问题,清洁能源的接入缺乏可靠性地保障,因此需要对其进行更为深层地研究。能源是人类赖以生存的物质基础,加大对清洁能源的开发利用,是人类社会发展的必然趋势。
参考文献:
[1]张玉新试谈能源危机和解决的方法门应用能源技术,2003(4):7-10
[2]稃明新能源与分布式电源系统(上)[冂电力需求侧管理,2003(3):44-46
[3]黄艳21世纪初我国电力发展趋势及分析[海南大学学报:自然科学版,2000(12):346-352。