基于数据库的轨道交通工程造价数据利用研究

发表时间:2020/10/29   来源:《建筑科技信息》2020年第6期   作者:马春露 莫林海 舒航 刘凯伦
[导读] 本文对数据库的轨道交通工程造价数据利用进行深入研究,以供参考

        摘要:随着城市轨道交通行业的大力发展,对交通工程造价数据信息化的管理要求也越来越高。工程造价信息化管理对于城市轨道交通项目减少工程成本,提高经济效益具有非常重要的作用,造价信息化管理可以更好地对城市轨道交通交通工程项目实现全面的掌控,从而使城市轨道交通工程造价管理水平进一步提高。根据轨道交通工程造价数据特点,结合工程造价数据信息化相关内容,通过对大量历史工程造价数据进行系统地梳理与分解,提出工程造价数据库的构建思路。基于此,本文对数据库的轨道交通工程造价数据利用进行深入研究,以供参考。
        关键词:数据库;轨道交通;工程造价


        引言
        在城市轨道交通建设实际过程中,交通工程造价数据信息化管理与控制为项目在施工成本与质量控制提供了全面性保障。为了能够进一步提升城市轨道交通专业的工程造价管理水平与质量,就必须要对项目工程造价信息化管理进行深入分析,从细节入手,提升城市轨道交通工程造价信息化管理的质量,最终获得更大的经济利益。
        1轨道交通工程造价信息化管理现状及特点
        1.1轨道交通工程造价信息化管理现状
        我国工程造价信息化管理步入快速发展阶段,单个项目通过图形算量、计价软件辅助造价编制,初步实现造价信息的数据化,且具备在线对比分析能力。但是城市轨道交通建设有其特殊性,几十公里的线路往往被划分为诸多标段,每个标段的工点设计、招标代理、造价咨询和实施单位各不相同。虽然我国大部分开建轨道交通项目的城市都有比较丰富的数据资源库,但是各地的资源库质量不一,健全的工程造价信息资源库还未形成。加之部分管理人员经验不足、资料散失导致依据文件不系统、不准确,以及大量历史数据在长期人工管理过程中形成信息孤岛化,使得建设相关方之间重复工作、数出多门且口径不统一等问题大量存在。要实现信息的有效利用,首先必须对信息资源进行有效整合,从而进一步完善信息资源库,为造价信息管理提供资源基础。
        1.2轨道交通工程造价数据的特点
        1.2.1影响造价数据的因子易于量化
轨道交通项目所在地多为城郊区,受区域差异影响较小,工料机单价水平受当地政府公布的造价信息约束、市场询价支撑力较强,影响造价因素如特殊施工工艺、施工环境影响等剥离后分析对比的数据具有可比性。
        1.2.2数据分析的结果具有指导借鉴意义
        工程造价数据具有可重复利用、可推理论证的特点,通过分析单价构成要素,修改工料机单价,将历史数据向当前延伸并与新组单价对比,可有效指导招标限价的编制、合同和结算谈判。也可以通过已完工程和在建项目招投标、合同、变更、结算数据进行系统的梳理分析,将不同线路、不同时期的招标项目进行比较,找出差异。
        2轨道交通工程造价数据库建立与完善
        2.1工程量清单结构分解及编码
        工程量清单结构分解指利用解析法对施工主要内容或施工方法进行阐述,是一种造价数据来源的递阶层次分解结构,目的是为了解决路径问题。通过这种垂直分类的方法,搜索清单名称可以找到数据库中全部相同清单下的造价数据。为便于输入、储存、抓取应用,工程量清单结构分解按照优先顺序划分为Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级、Ⅴ级、Ⅵ级,六个级别逐层细化。搜索Ⅰ级名称可以显示全部Ⅱ级分解指向,搜索Ⅰ级+Ⅱ级可以显示全部Ⅲ级分解指向,以此类推。
        2.2数据组属性
数据组属性表征除物价水平、项目特征以外影响单价的因素,例如工程所在区域、使用的定额标准或计价依据、价格形成的时间等。属性相同的数据作为一个数据组,清单属性往往跟随数据组一起出现,是该组数据形成的背景条件,对价格有一定的影响但难以分解量化。



        2.3清单变量
        清单项目特征是构成分部分项工程项目、措施项目自身价值的本质特征,是对体现清单价值的特有属性和本质特征的描述,而变量是项目特征的延伸和量化。常用的变量包括:尺寸(长、宽、高)、深度、桩径、水泥掺量、抗渗等级、混凝土等级、钢材型号、电缆规格、设备品种规格型号等。变量是除物价因素外造成相同工程量清单但单价高低不同的主要原因。通过测算单个变量的变化对综合单价的影响,确定变量系数,常用变量指标可设为“1”。编制变量清单并将其量化是数据库智能分析和利用的关键。
        2.4数据库逻辑
        工程量清单的结构分解编码、数据组属性、变量可视为该清单在数据库中的三个维度,具有相同维度的数据在库中的位置应该是相对集中的。通过对不同维度的分解、对比、修正,并在剥离离散性后得到的平均值即可视为数据分析的成果。清单分级目录的层次代表数据分解的颗粒度,大数据的优势是大量数据的归集能体现离散性,剥离离散偏差的平均数具备参考价值,并不是层次越多越好。
        3轨道交通工程造价数据库的利用研究
        3.1数据快速检索与查阅
        数据库首先具备存储的基本功能,根据工程量清单结构分解原理查阅下一级别的全部清单项目。也可以通过搜索关键词查询库中所有相同清单项目的信息,按照指令和需求识别、汇总、计算和输出,进而计算相同清单名称下价格的平均值、最大值、最小值、离散性。
        3.2造价数据的对比
        造价数据的对比分横向、纵向两个层次。横向指相同属性下不同站点(部位)清单的对比;纵向指不同时期、不同变量情况下不同数据组之间的对比,前者通过查阅可直接获得,后者需对造价数据进行修正计算得到。修正造价数据时,首先将物价拉到同一物价时点,由“过去时”调整为“现在时”,计算物价影响系数。人工、材料、机械价格的调整可以依据各地造价管理部门发布的《工程造价信息》中的价格信息、价格指数及造价指数进行调整,对于其中没有的材料、设备价格可以通过询价按市场价格予以确定。然后,根据每个变量影响程度的赋值计算变量影响系数,原清单单价乘以两个修正系数可以得到相同属性下的延伸单价,经修正的造价数据可实现纵向对比。根据相同原理,数据库中经修正的单价平均值可为新单价的确定提供建议。
        3.3造价管理工具
        工程造价数据库可以作为管理工具,广泛应用于工程项目全过程造价管理与控制。数据对比的结果可以辅助判断设计方案的经济性,施工图预算、投标报价及标底的合理性。数据分析的结果可以辅助项目管理者估算合同或变更费用、判断清单单价的适用性。长远看,对不同地区的造价水平进行比较,也可以为跨区域投资决策提供必要信息。大数据反映的是造价数据大小,在一定程度上表示市场对完成该项清单内容所期望得到的费用水平,这一点在招标控制价编制、不平衡报价分析、变更单价确定、结算谈判中尤为重要。
        结束语
        总而言之,工程造价数据库的建设是一个循序渐进的过程。基于数据库的轨道交通工程造价数据利用具有重要意义及广阔的应用前景,我们可以通过标准化的工程量清单设置以减少数据录入的工作量;通过云计算以降低数据储存和管理成本;通过优化数据库功能以拓宽数据利用领域;通过人工智能以实现工程造价数据算法的进化。在大数据和万物互联的当今社会,科学、有效地识别分析有用信息尤为重要,建立于数据库上的造价数据利用能够有效筛选具有指导性的可用造价信息,进而帮助项目参与各方更好地服务工程建设。
        参考文献
        [1]田亚泽.工程造价信息化建设存在的问题及对策[J].建筑模拟,2018(29)
        [2]尤嘉.建设项目工程造价全过程管理的重点与对策研究[J].科技视界,2014(35):125-126.
        [3]刘萍.浅析城市轨道交通建设全过程造价控制[J].价值工程,2018,37(08):98-99.

投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: