谢君芳
青海盐湖工业股份有限公司 青海,格尔木 816099
摘要:随着社会的发展和进步,当前阶段社会生产生活对于电力能源的需求越来越大,因此有关电力系统组成设施的稳定运行就至关重要。具体指向变电站的使用,当前阶段也更是有智能变电站在进行使用,这样一来,实际提升了变电站的技术水平,并且借助智能化的技术支持,相应的故障解决和技术升级等也更会变得简单和可靠。所以本文基于此,分析和研究智能变电站的继电保护系统可靠性。
关键词:智能变电站;继电保护;系统可靠性
智能变电站采用先进的采集与控制设备,通过光缆网络传递数字信息,完成自动控制、智能动作等功能。由于二次设备与采集信号的差异,继电保护系统与传统变电站也存在很大不同,所以智能变电站继电保护系统的可靠性尤为重要。
1. 智能变电站继电保护系统的构成
智能变电站继电保护系统主要由电子式互感器、合并单元、交换机和智能终端 4 大部分构成。(1)继电保护系统中的电子互感器相较于传统的互感器,更能保证故障检测的准确性,促进电力系统更加安全、稳定地运行。同时,光缆对于传统电缆的替换,使系统的经济效益更加可观。而且,电子式互感器拥有数据传输的优势,对变电站的智能化发展有重要的意义。(2)合并单元是信息数据由电子式互感器传递至保护装置的中间环节,有着无法替代的重要作用,使互感器和保护装置间不再需要复杂的接线,在节约了资金的同时也有效地保障了二次设备数据的有效共享。(3)交换机是智能变电站继电保护系统的核心部分,能通过通信通道,达到数据传输的目的。(4)智能终端能大力提高电力系统预防和监测故障的能力,对电力系统的故障检修有重要的意义。
2. 智能变电站继电保护系统的可靠性分析
系统的可靠性分析一般面向系统内部组件的环境,其可靠性体现在功率达标、自我修复能力、故障几率可控、确定组件的使用寿命以及其他修复所需时间等方面。其中,组件系统是否可靠主要通过三个方面进行判定。第一,该系统能够在特定情况下,在一定时间范围内达到指定功率的概率;第二,系统设备在长久时间内是否能够达到规定功率,或在系统处于异常状态下,能否通过自我修复快速恢复运行;第三,在系统正常稳定运行中,故障时间的平均值能否用于判断下一次发生故障的大致时间,在维护过程中做到及早防范。
3 智能变电站继电保护系统的可靠性
3.1 提高系统冗余性
提高系统冗余性可以维护继电保护系统的可靠性和安全性,具体的措施为:利用以太网交换机的数据链的路层技术对变电站实时监控;在三个基础网络的基础上形成网络架构的需求,其中,总线结构利用交换机进行数据信息的传送,有减少接线的作用,但是冗余度比较差,所以在使用中,可以通过延长时间增加敏感度,提高冗余性;环形结构环路上的任何点都可以提供冗余,如果和以太网的交换机进行有机结合就可以形成树协议,也可以提高继电系统的冗余度,同时还可以在一定的时间范围内实现对网络重构的控制,但是环形结构使用时需要的收敛时间比较长,完成任务的速度比较慢,还会对系统重构产生影响;星型结构的等待时间比较短,所以适用于比较高的场合,不存在冗余度,其缺点是一旦主交换机的过程中有了故障,就会对信息传送产生影响,可靠性相比下来就比较低,所以并不适合进一步推广普及。
3.2 间隔层的继电保护
通过间隔层的继电保护来进一步提高继电保护系统的可靠性,首先就要在继电保护系统中应用双重化的装置,以集中配置后备保护,因为后备保护可以给变电站的后备设备、开关失灵、相邻的相连的线路以及对端的母线提供保护,进而结合后备电流就可以准确诊断电网运行中出现的问题和故障,针对跳闸问题制定解决对策。还可以对整个变电站的电压按等级进行集中配置,通过技术进行调整,以适应电网运行过程中的具体情况。
3.3 网络的架构
(1)总线结构。总线结构中的交换机可以通过端口和其他交换机进行连接。一般情况下,IED端口的速度没有上端口快,且交换机的最大数量由系统最大延时决定。总线结构的优势是接线较少,缺点是冗余度较差。(2)星型结构。星型结构的主要特点是系统等待时间相对较少。当主交换机和其他交换机进行连接时,能够有效缩短系统的等待时间。这种结构不具有冗余度,在出现故障时,可能会造成所有IED信息的遗失,从而降低了星型结构的可靠性。
3.4优化系统的冗余性设计
在继电保护过程中,系统冗余的优化能更大程度地避免系统错动和拒动问题的出现,进而促进系统的可靠性。继电保护系统的冗余性增强可以从以下2个方面着手:(1)利用以太网交换机中的数据链路层技术实现变电站自动化实时监控;(2)根据变电站网络架构的需求的不同,基于总线结构、环形结构和星型结构这3个基础网络结构的特点进行合理选择应用。总线结构可以有效地减少接线,但同时冗余性有待提高,在使用中对时间长度的要求较大;环形结构由于其环路上的任意点都能提供冗余,冗余性较好,但是收敛时间较长,对系统的重构影响较大;而星型结构的特点是等待时间短、没有冗余度,其可靠性比较低。针对3种结构的不同特点结合自身需求进行合理选择,才能提高变电站继电保护系统的可靠性。此外,在优化系统冗余设计时,应合理分析自己的投入率,在提高系统可靠性的同时注意经济效益的实现。
3.5优化线路保护配置与合理开展巡查检查工作
优化线路保护配置与合理开展巡查检查工作可以采取以下措施:(1)针对线路保护配置工作,可采用集中式和后备式 2种方式,相关人员通过对电压间隔单元的保护和通信系统的监控,可以及时地发现系统中产生的问题并解决,以提高智能电网系统运行的安全性和可靠性;(2) 在智能化的发展下,对人力资源的需求变小,但其仍是电力系统运行不可或缺的因素。在提升智能变电站继电保护系统可靠性的工作中,应注意巡查检查工作的开展,成立具有专业技能和职业素养的巡检工作小组,同时,制定完善的巡检制度和措施,将巡检工作落到实处,明确巡检人员的工作职责。
结论
智能变电站的实际使用和系统维护等,需要借助有关技术进行,这样不仅能够使得智能变电站体现其智能化的技术可靠性,同样也更是可以借助有效的系统检测和维护等,降低故障的发生率,这样一来,也更是可以极大地保障整体电网的运行安全和用电稳定。
参考文献:
[1]刘之亮.500kV智能变电站继电保护装置的安全运行问题分析与对策[J].机电信息,2019(35):77-78.
[2]吴涛. 变电站继电保护二次回路的设计、实施及相关问题研究[D].长春工业大学,2019.
[3]叶俊.基于成功流法的智能变电站继电保护系统可靠性分析[J].工程技术研究,2019,4(20):239-240.
[4]金基伟,杨令,王开波,邓德茂,张祥龙.220kV智能变电站继电保护系统可靠性探析[J].通信电源技术,2019,36(09):277-278.