吴胜华
江西省抚州市临川区第十中学344000
摘要:在初中数学学习中数形结合思想是主要思想之一,可以使学生在解题中有许多思路,而且帮助学生迅速准确地解题。因此,当前作为初中数学教师,在教学中必须要不断创新和改变传统的教学方式,合理应用数形结合思想,这样不仅可以提高学生的学习效率,而且可以获得明显的教学效果,以更好地促进初中数学教学发展。
关键词:初中数学 数形结合思想 学习效率
引言
数形结合思想作为一种高效的数学思维方式,向来是初中数学教师在教学中应用的重要思维内容。数形结合思想就是将数字几何与图形进行结合,进而达到简化数学教学内容的目的,使得教学内容更加形象和具体,便于学生进行学习。通过灵活应用数形结合思想,能够有效提升初中数学的教学效率。本文将对初中数学教学中数形结合思想的应用展开讨论,并提出了几点建议:
一、数形结合思想的内涵
我们所说的数形结合,从字面上来理解就是说将数量化的关系或者是概念,通过立体的几何图形直观呈现出来。数字和图像这两个看似独立的概念,在一定的条件下可以相互转化,数字化的问题能够通过几何图形进行解决。数形结合在一定程度上可以将复杂难懂的数学概念生动直观地表现出来,在一定程度上可以降低学生的学习难度,有助于问题的解决,从而实现数学学习效率的提升。
二、数形结合思想在初中数学教学中应用的重要性
(一)减少数学学习的难度
在很多初中生看来,数学学科具有一定的抽象性和复杂性。正是因为数学是逻辑性和推理性很强的学科,所以学生在学习中不可避免碰到很多难题。特别是在初中数学教学中,有大量复杂的数学定理和数学公式,而且许多数学公式和数学概念并没有将推理过程展示给学生看,这样就很有可能导致数学学习难度加大。在传统的初中数学教学模式中,教师采用填鸭式的教学模式,造成学生在学习数学公式以及数学概念中,采用死记硬背的学习方法,这样难以提高学习效率。但是对于初中数学教师来说,在教学中应用数形结合思想,利用思想的准确性表征图形关系,可以在潜移默化中帮助学生清楚地认识数和形,让学生易于学习,这是提高学生学习效率的关键途径。
(二)提高学生的学习能力和思维水平
将数形结合的解题思想传授给学生并引导学生积极地训练,一方面通过贯彻数学思想可以锻炼学生的思维方式,形成数学解题意识并带来能够提高学习效率的积极作用;另一方面,当学生巧妙地应用解题方法并从中感受到数学解题的快乐时,能有效地提高学生的学习积极性。
(三)促进学生全面发展
数形结合思想在初中数学课堂中的有效应用可促进学生思维的多样化发展,全面提高其解题能力。在教师将数形结合思想融入课堂时,学生能够通过自主探索,寻求到更多的解题新思路和新技巧,继而帮助学生缩短同类型题目的解题时间,减轻其学习负担。
三、数形结合思想在教学中的具体应用路径
(一)概率知识中的应用路径
近年来,在新课程标准中,强化了概率和统计方面的知识内容,重在要求教师通过有效的教学策略使学生在掌握概率这一模块知识点的过程中渐渐学会发现问题、养成探究意识、学会自主整理数据并且最终解决问题,掌握解题技能。而学生往往缺乏数据意识和实践能力,此时,数形结合思想的养成就显得尤为重要,鉴于此,教师可通过组织有效教学活动,引领学生借助数形结合思想解决问题。例如:在某一不透明的箱子内分别放入了标有-1、0、1、2、-2这五个数字的小球,且在外形上,除了所标注的数字外,这五个小球并无差异,此时,可随机抽取一位学生上台在箱子内任意摸出其中一个小球,随后向学生提出问题:“若此枚小球上所标记的数字就是点A的横坐标,而该数字的平方即是点A的纵坐标,问:该点落在函数y=x2-x+2与x轴间所围成区域内的概率是多少?(不含边界)”此时,可引领学生通过画树状图来得出A点的所有坐标点以及该函数的图形,得出最终概率,通过上述课间小活动,教师则可以带领学生进一步体会到数形结合思想的解题优势,渐渐养成多样化的解题思维与良好的解题习惯。
(二)在函数教学中的应用
函数属于数学学习中难度较大的类型之一,在初中阶段,学习课本中的函数属于最基础的级别,虽然如此,也会常常对初中生造成一定的学习困扰,函数是最典型的能将数形结合解题思想应用得淋漓尽致的题型,函数图形本身是无意义的,正是坐标上的数字给出了解题的突破口,学生能通过数字所表达出来的信息解析函数,通过数形结合的方法降低了学习难度。
(三)在有理数中应用数形结合思想
在初中数学课堂教学中有理数是重点之一,在有理数教学中教师可以渗透数形结合思想,让有理数转变成数形结合的重要载体,也可以使学生充分掌握有理数的知识。比如:对“有理数的运算”进行讲解时,教师可以积极组织学生参与教学活动,利用活动慢慢掌握数形结合思想。首先教师可以在黑板上将一条数轴画出来,在数轴的原点位置用粉笔点一下,接着把粉笔沿着数轴正方向移动三个单位长度,然后朝着反方向移动两个单位长度,这时粉笔落在数轴上的“1”处,这时学生可以迅速计算出最终的结果是1,再全面分析全过程,可以得知,由于粉笔在移动中前后出现两次不一样的移动,所以出现此结果。利用数形结合过程,可以使学生在大脑中自觉构建数形相结合的过程。
(四)在空间与图形中应用数形结合思想
初中数学课堂教学中几何是重点之一,相对于代数的抽象化而言,几何由于直观化的图形图像,可以提高学生的学习兴趣。然而因为初中阶段学生空间思维能力较弱,导致他们在了解几何图形的变化时经常碰到难题,很难充分掌握几何图形的改变思路。教师在教学中普遍应用数形结合的思想,利用空间和图形的相结合,使学生直观地掌握几何知识,加强学生的空间思维能力。教师通过应用数形结合思想,可以从日常生活中挖掘丰富的素材,充分运用日常生活中的事物,鼓励学生亲自实践,积极探究几何图形是如何进行空间转换的。
结束语
总而言之,在开展初中数学教学过程中,由于数学本身存在较强的逻辑性和抽象性,教师可以积极结合数形结合思想开展数学教学,使得数学教学内容更加形象和具体。利用简单化的数学内容开展教学,可以提升初中生的数学学习效率和教师的教学质量,为学生未来的数学学习打下牢固的基础。
参考文献
[1]廖莉丽.初中数学数形结合思想教学的应用研究[J];数学大世界(下旬);2018(12):15.
[2]张瑞财. 数形结合思想在初中数学教学中的应用[J];新课程(中);2018(12):95.
[3]柴兴禄. 数形结合思想在初中数学教学中的应用策略分析[J];新课程(中);2018(12):96.