带电检测技术在变电运维中的应用

发表时间:2020/12/2   来源:《当代电力文化》2020年第19期   作者:荆厚良
[导读] 带电检测技术在变电运维中有很大的应用价值。
        荆厚良
        国网通辽供电公司   内蒙古通辽    028000
        摘要:带电检测技术在变电运维中有很大的应用价值。技术人员要合理运用此项技术,了解设备的运行状态,及时发现问题并解决,保证电力系统能够安全运行。
关键词:带电检测技术;变电运维;应用
1带电检测
        带电检测技术应用的主要意义,是配电线路可以处于正常的运行状态下开展检测工作,配电线路在运行过程中,通过带电检测技术,可以实时掌握配电线路和设备的运行情况,一旦发现配电线路和设备存在问题,可以及时对存在问题的线路和设备实施处理措施,避免线路和设备出现问题,影响到电力网络正常的运行。配电线路和设备保持在运行状态,若绝缘材料的绝缘性能出现问题,或者设备所处的环境发生变化,如环境温度过高或者湿度较大等,都会引发线路和设备出现局部放电等安全问题,一旦局部放电现象加重,会破坏配电线路和设备,进而出现运行故障。
        局部放电通常分为四个流程:(1)第一个流程会出现离子化现象,放电原理为原子带有电荷;(2)第二个流程为气体放电,放电原理为电流发生电子崩溃情况,从而形成气体电流;(3)第三个流程为局部放电,放电原理为不同电极未达到桥络放电的条件;(4)第四个流程分为内部放电、沿面放电以及尖端放电,放电原理为在介电质孔隙或者杂物内放电。
2带电检测技术在变电运维中的优势
        电力行业的技术人员在变电运维过程中利用带电检测技术可在日常工作中及时发现肉眼无法观察到的问题,并且及时排查安全隐患,及时防止安全事故的发生。当技术人员在检测过程中排查出问题时,可以及时利用带电检测技术进行处理,极大程度上排除潜在的安全隐患,防止发生安全问题。带电检测技术还拥有的一个极大优势即为技术人员在检测过程中不必断电,极大程度上避免对附近用户造成断电影响,操作起来非常简单且安全。带电检测技术还可以有效提高技术人员的工作效率,因为技术人员在日常巡视工作时,可以直接利用带电检测技术对变电设备的运行状态进行检测,可以有效避免繁冗复杂的检测步骤,使操作变得简单、高效。比如,技术工作人员能够直接利用带电检测技术检测、诊断绝缘缺陷程度。在变电设备的日常运行过程中,技术人员不能判断设备的检测状态,不仅如此,在变电设备运行时,人若靠近设备,则会产生相当大的安全隐患。但技术人员能够利用巡检仪检测绝缘缺陷,对检测数据进行收集,并将这些数据直接在文档中进行保存并给以分析。运用此项技术的运维人员还可以在试验周期之内调整变电设备的运行状态,做到第一时间发现设备存在绝缘隐患的位置、设备缺陷的真实情况和变化趋势。
3带电检测技术在变电运维中的应用
        3.1脉冲电流技术
        脉冲电流技术是目前最常见的,也是使用广泛度最高的一种带电检测技术。此项技术主要是周期性地对变电设备的局部电流的运行状态进行放电检测,同时也可以在直流条件下进行局部的放电检测。电力维护技术人员利用此项技术需要使自身积累的维修经验和先进的带电检测技术相结合,合理利用脉冲电流法,充分发挥脉冲电流技术在电力设备检测过程中所呈现的优势,借此达到提升带电检测技术整体上的工作质量和效率的目的。
        3.2红外线检测技术
        红外线检测技术常用于对设备进行测温。红外测温原理如图1所示。变电设备在运行时会受到某些因素的影响导致设备局部温度过高。在变电设备温度升高过程中,应用红外测温装置可以科学合理地检测设备温度和分布规律,借此方式来判断设备的实际运行状态,及时判断设备是否出现异常情况,再根据判断结果来完成对设备的预见性检测和维护。此项技术在实际应用时由于不会受到电磁场的影响和干扰,所以最终检测结果的准确性较高。于是,此项技术成为一种在带电检测技术在变电运维中常用的检测技术。


        红外测温技术一般有两种不同的检测方式,一种是一般检测,另一种是精确检测。一般检测通常是大面积常规扫描变电设备,并在同时完成检测工作,因此不必特别要求检测装置及周围环境。精确检测对检测装置及周围环境的要求相对较高,检测时,必须达到排除风速和辐射等影响因素的条件,主要检测由设备电压制热所造成的缺陷。在实际检测时,可以联系实际情况科学合理地结合这两种检测方式,先用一般检测方式对疑似有故障的设备进行详细的检查,找到存在的可疑之处,确定好范围,最后利用精确检测方式确定故障的类型、严重性以及处理方案等等。利用这种检测方式可以有效地减短检测周期,发现并处理故障的效率也会得到有效提升。
        3.3无线电干扰电压技术
        在通常情况下,电晕在放电时会产生电磁波,这种电磁波可以利用无线电在电压表检测时对其进行干扰。所以,技术人员能够在检测电气设备局部放电时利用此特点来提高检测的准确性、科学性及有效性。国外还在利用无线电干扰电压表来对设备进行局部放电检测,但我国在普遍使用射频传感器检测局部放电。RIV方法不仅能够定性检测局部放电现象,还能够通过判断电磁信号的强弱性来检测长电缆的局部放电位置。
        3.4介质损耗分析法
        绝缘材料与变电设备的局部放电能力有关,变电设备的局部放电能力越强,绝缘材料遭到的破坏程度就越大。若设备局部放电的能量消耗加快,那么绝缘材料所受到的局部放电带来的破坏也会加深。所以,各大电力部门中所有相关技术人员和管理人员必须把放电消耗功率测量工作重视起来。因为绝缘材料结构中的气隙数量和电压的变化成正比,随着电压的升高不断增多,与此同时,局部放电也会在一定程度上对介质带来损耗,会导致设备运行数据产生较为明显的波动变化,所以电力部门的技术人员可在日常巡视检测工作当中,在数据变化的基础上判断局部放电能量,借此来判断绝缘材料是否已经遭到破坏。
        3.5超高频局部放电检测技术
        超高频局部放电检测技术能够保证测试GIS初始局部放电脉冲的有效性。这项技术的测试仪器具有很强的测量频带和降低噪音信号的功能。利用这两项功能可以极大程度上削减噪声在放电检测上的负面影响,从而保证并且提高整个设备监测数据的准确性,同时还可以最大程度上再次呈现局部放电脉冲。技术人员在利用此项技术时,可以依据频带的宽窄程度,在实际操作过程当中将其分成超高频窄带检测和宽频带检测。两者在中心频率方面存在着很大的差别。由于超高频宽频检测技术有降低噪声和涵盖信息量大的优点,所以有着更为广泛的应用。
        3.6暂态地电压检测技术
        配电线路设备出现局部放电情况时,会使设备与接地系统之间产生暂态电压脉冲。采用暂态地电压检测技术,通过检测配电线路设备的局部放电情况,可以收集到放电点发出的辐射电磁波信号,根据信号的变化,判断设备金属外壳带有的暂态地电压持续状态。暂态地电压检测过程,将检测装置安装在设备上,由于设备出现局部放电的情况,产生的电磁波信号向相反的方向传播,在传播过程中接触到金属外壳,外壳产生的电压,经由检测装置的检测,可以发现设备存在的问题。
结束语
        目前,智能电网加快建设速度,如何维护有大容量和结构较为复杂的配电网并使其运行具有高效性是专业工作者应该重视的问题。为使计划停电次数有效减少并保证供电稳固,必须做到把变电运维工作坚决落实到实际工作当中,让服务质量有所提高。由于带电检测技术具有在不必停电的情况下检测设备运行状况的功能,所以此项技术在分析、诊断设备故障和防止安全事故发生等各方面具有极其重要的价值。
参考文献
[1]徐亚兰.带电检测技术在变电运维中的应用探究[J].科技创新导报,2018,15(36):64+66.
[2]李虹.带电检测技术在变电运维中的应用[J].民营科技,2018(05):45.
[3]叶凯东.带电检测技术在变电运维中的应用[J].中国高新区,2018(05):132+134.
[4]张民,李炳灼.带电检测技术在变电运维中的应用剖析[J].通信电源技术,2018,35(02):135-136.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: