基于长短期记忆网络的公路货运量预测

发表时间:2020/12/11   来源:《科学与技术》2020年第23期   作者:雷自强
[导读] 公路运输是物流运输网络的重要组成,精确预测公路运输货运量对指导公路运输网络建设和完善我国物流运输网络有重要作用。针对这一问题,本文提出了一种基于长短期记忆(LSTM)网络的公路货运量预测方法。
        雷自强
        华北电力大学 经济与管理学院,北京市,昌平区 102206
        摘要:公路运输是物流运输网络的重要组成,精确预测公路运输货运量对指导公路运输网络建设和完善我国物流运输网络有重要作用。针对这一问题,本文提出了一种基于长短期记忆(LSTM)网络的公路货运量预测方法。运用斯皮尔曼分析方法分析了公路货运量和相关影响因素间的关联性,采用LSTM网络对四川省2013-2017年公路货运量进行预测。实验结果表明, LSTM网络货运量预测模型具有较高预测精度。

关键词:公路货运量;长短期记忆网络;货运量预测
0 引言
        随着国家经济快速发展,我国需要筹建更全面多方位的物流运输网络。精确预测公路运输货运量对完善我国物流运输网络有重要作用。公路货运量预测为物流需求预测提供重要依据,也为物流基础设施的建设、完善物流供给系统提供借鉴意见。本文以四川省公路货运量为研究对象,探寻四川省公路货运量的预测模型,提高预测精度,以期能为四川省公路货运的合理规划提供建议,同时也为四川省物流基础设施的建设、完善物流供给系统提供借鉴意见。因此本文综合考虑原始公路货运量数据中含有随机数据的问题和货运量非线性、影响因素众多的问题,建立一个高精准度的公路货运量模型,以期能为四川省公路货运的合理规划提供建议。
1 方法原理
        长短期记忆人工神经网络(Long-Short Term Memory,?LSTM)是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。LSTM改进了传统循环神经网络,克服了循环神经网络的梯度消失或爆炸的问题,能够学习到更久远的信息。
        LSTM定义和维护一个内部记忆单元状态——细胞状态,通过输入门、遗忘门、输出门三个门结构来更新、维护或删除细胞状态内的信息。为输入;表示时刻隐含层状态;表示时刻的长期记忆状态;表示遗忘门的输出信号;表示输入门的输出信号;表示输出门的输出信号;表示将要输入到长期记忆中的预备信息;表示将要输入到隐含层状态的预备信息。从记忆单元输入到输出依次按照式(1)-式(7)计算。

2 算例分析
2.1数据处理
相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法。本文首先使用斯皮尔曼相关分析方法确定主要影响2000年到2017年间四川省公路货运量的因素分别为四川省的常住人口、全社会固定资产投资、社会消费品零售总额、地区生产总值、第一产业增加值、第二产业增加值、第三产业增加值、公路里程、公路营运载货汽车拥有量和公路货物周转量。
本文以四川省2000-2012年的公路货运量及相关影响因素作为训练集用于训练lstm货运量预测模型,以四川省2013-2017年的公路货运量及相关影响因素作为测试集用于验证模型预测精度和可行性。
2.2模型设置
LSTM预测模型的输入层节点数目为10,LSTM层节点数目为4,输出层节点数目为1。激活函数默认为tanh函数和sigmoid函数,损失函数为均方误差。将优化器设置为'adam'并进行200轮训练。指定初始学习率为0.4393,为防止梯度爆炸,梯度阈值设置为1,在第70轮训练后通过乘以因子0.1来降低学习率。
2.3 预测结果分析
本节利用lstm货运量预测模型来预测2013年到2017年各年公路运输货运量,得到的预测值和实际值对比如下表2-1所示:

由表可知,lstm模型对四川省2013-2017年预测绝对误差均在3%以内,2015年预测绝对误差最大为2.47%,2017年预测绝对误差最小为0.01%。结果表明基于lstm神经网络的公路货运量预测是可行有效的,能够达到较高的预测精度。

3 总结
本文以四川省为例,研究了公路货运量的预测指标和预测方法。运用斯皮尔曼分析方法分析了公路货运量和相关影响因素间的关联性,进而提出公路货运量预测的主要影响因素。本文建立了基于LSTM神经网络公路货运量预测模型,将相关影响因素输入模型,得到公路货运量预测结果。经验证,该模型误差较小,具有较大应用价值。
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: