铁路信号计算机联锁系统设计与优化

发表时间:2021/1/7   来源:《中国教工》2020年第21期   作者:隋超
[导读] 随着铁路运输行业迅猛发展,原先的车站铁路信号联锁装置已无法适应铁路信号对可靠性与安全性的更高要求。
        隋超
        江苏省徐州技师学院
        随着铁路运输行业迅猛发展,原先的车站铁路信号联锁装置已无法适应铁路信号对可靠性与安全性的更高要求。就技术方面而言,铁路信号系统经历了机械联锁和电气联锁等两个阶段,目前铁路干线上所使用的联锁系统绝大多数以计算机为核心构成了计算机联锁系统。
        一、铁路信号计算机联锁系统的性能要求分析
        1、根据铁路干线特点设计联锁系统
        由于计算机联锁系统的综合性能远远超过继电联锁系统,因此车站联锁系统由继电装置向计算机联锁系统转化已成为一种不可扭转的趋势。具体来说计算机联锁系统的优势主要表现在适时性、安全性、可靠性、可维护性及性价比等若干方面。
        计算机联锁系统是利用目前已有的工业控制计算机,研制一套专用的硬件与软件系统实现信号、进路与道岔间的联锁关系,因此它实质上是一个满足故障--安全信号原则的联锁逻辑运算系统,计算机在系统中的作用是将操作命令与现场各种输入的表示信息读入,再根据计算机内部状态等条件进行逻辑运算,判断后输出控制信息至执行机构,实现多变量数字输入和多变量数字输出这样一个复杂传递函数的变换。
        2、联锁系统的优化策略
        联锁系统必须不失时机地采集到输入变量的变化情况,及时刷新站场各类表示信息,及时输出道岔和信号的控制命令,而且对涉及安全(危险侧)的控制命令必须以具有故障——安全特征的形式输出。
        (1)确保可靠性与故障——安全性
        信号联锁系统是一种实时控制系统,它必须是高可靠的,具体来说,对计算机联锁系统而言必须解决二个主要问题。
        一个是系统内信息传递的可靠性与安全性:鉴于工业计算机自身不具备故障——安全特性,因此系统内传递的信息也不具备安全性,受各种干扰、辐射以及各类故障的影响,信息畸变在所难免,从而造成逻辑运算错误而可能引发危险侧输出。
        另一个是系统内信息变换及逻辑运算的安全性:就联锁程序而言,无论设计调试方法多么严密也很难排除所有隐含的缺陷,这就要求必须引入避错及容错机制使故障形成的危险侧运算结果输出的概率达到规定的要求。
        (2)优化结构模块化与标准化,提高经济型
        铁路站场的规模与作业需求不尽相同,因而无论是硬件还是软件都必须具有模块化结构特征,硬件模块化、软件真正实现程序、数据的有效分离。
        计算机联锁系统取代继电联锁系统的另外一个重要原因是为了降低系统费用成本,一般来说系统费用表现在设计、制作、施工、调试以及建筑费用上,因此计算机联锁系统必须在以上若干方面充分显示其优势。
        三、总体设计方案与关键技术
        在分析了计算机联锁系统的性能特点以及对故障——安全性的特殊要求基础上,提出了适合于企业自备铁路使用的系统体系结构并实际运用于自备铁路站场。
        1、系统结构与工作原理
        从结构来看该系统属于二级集散式控制系统,突破了原有的集中式信号系统模式,具有模块化、层次化等特点。这种结构的优点在于可根据车站规模的大小、作业需求的不同,在不改变联锁软件的基础上通过修改站场静态数据并增设相应硬件模块,即可满足系统的扩容要求,先进的控制体系结构结合工艺设计使得系统调试周期与现场施工、开通周期均大为缩短,具有很好的经济与实用性。
        (1)联锁运算层
        联锁微机是系统的核心部分,承担着操作输入的判别、联锁信号的调理及分析、逻辑运算、控制命令生成、故障诊断等任务,其可靠性、安全性对系统的总体故障—安全性能有较大影响,联锁系统中设置了两台联锁微机,其中一台为冷备机,可进行人工切换。


        (2)复核驱动层
        复核驱动层由PLC组成,其承担着采集表示信息并将联锁微机下达的操作命令转化为故障—安全的控制信号的任务,作为系统安全性设计的重要环节之一,PLC还承担着对联锁微机形成的操作命令进行复核检查的屏障作用。
        2、可靠性及故障—安全设计
        目前,国内外进行高可靠系统的容错设计多采用三模静态冗余方案或二模动态冗余方案。特点是对硬件故障具有较强的屏蔽与纠错能力。目前这二类系统的可靠性计算都是在设定表决器或冗余管理机构的可靠度R(t)=1的基础上进行的。
        在铁路信号领域,由于行车安全被认为是超过效率的重要考虑,因此相应对计算机联锁系统的可靠性与安全性要求很高,针对这种情况,可以有二种方式供我们在设计中进行选择。其一是强化系统的可靠性设计,这是基于可靠性理论包含了系统故障的屏蔽效应,因而用高可靠性换取系统的低故障率,以此隐含了对安全性的相对提升。但可靠性技术总是受一定的条件所限制,如硬件冗余资源使用、采用高可靠器件等,这完全取决于系统的可靠性要求及财力许可。其次我们可以基于这样一个思路来考虑问题:如果计算机联锁系统在保证一定可靠性要求基础上并结合故障—安全技术来得以实现,实质上也就是说牺牲少量的效率来避免昂贵的成本并换取系统的高安全性,同样也能满足铁路信号对联锁系统的性能要求。
        基于以上考虑,系统的关键技术设计中主要融入了以下思想及技术措施。
        (1)结构模块化、标准化,便于系统扩展并提高可维护性
        联锁系统的硬件结构模块化设计主要体现在联锁机、PLC及安全信号结合电路的组合等三种主要设备或部件上。系统的标准化设计主要体现在联锁软件与结合电路上。联锁软件可以适应不同站场规模、不同作业要求;结合电路则可针对室外设备的不同类型具有通用性与兼容性。
        (2)系统故障诊断与安全导向
        联锁系统的硬件故障通常表现在联锁主机、PLC与结合电路模块、工作电源等设备上,软件故障表现为程序跑飞、技术条件错误、通信异常等。这些故障的表现方式及造成的结果不尽相同,有些故障可以及时发现,有些则难以识别;有些故障仅影响系统工作但不至于危及安全,而另外一些故障则可能造成危险侧输出。因些应当区别对待并采取相应的处理方式。
        (3)变换联锁信号的逻辑表达形式
        在联锁系统中,与安全相关的信息是由具体的硬件设备的状态来表达的,这些硬件设备一般存在二个逻辑状态(指数字量),其中一个状态代表安全侧信息,另一个状态代表危险侧信息。根据故障—安全原则,凡是参与传递、存贮、处理和产生非安全信息的硬件设备故障时,必须以极大的概率导向安全侧状态,这就必须使电子电路的输出具有故障不对称性,也即在电路故障时输出安全侧的概率占压倒性优势。显然常规的电子电路与逻辑表达方法难以满足需求,其基本原因是“s-a-0”与“s-a-1”二种固定逻辑型故障是基本对称的。因此需要变换联锁信号的逻辑表达形式以及相应的电路结构才能实现。
        四、总结
        铁路信号计算机联锁系统在冶金系统内等国有大中型企业进行推广,具有较好的应用前景。总结起来,在联锁系统中已经建立了一整套运用于企业自备铁路使用的信号联锁系统技术解决方案并重点解决了以下几个问题。
        1、在单模控制体系结构中,通过对铁路信号的深入分析,较为完整地建立了铁路信号联锁系统的故障模型并提出了相应的故障诊断与安全导向方案。
        2、在企业自备铁路信号领域内较早采用了二级集散式控制体系结构,即采用联锁、复核二级检查机制,有效地解决了因CPU与编程语言缺陷、算法与编码错误而有可能带来的系统错误输出问题。联锁、复核二级用户程序均有效实现了程序、数据分离的设计思想并建立了一套量化计算联锁系统可靠性与安全性的评价体系。
        铁路信号计算机联锁系统的设计定位仅仅只放在了企业自备铁路上,如果真正欲使该系统在应用面与技术水平上更进一步,还需在系统可靠性设计上进行重新定位;对部分目前少数仍在使用的触点型安全型继电器进行全电子化设计,在后期的研究中将予以实现。
参考文献
[1]试析铁路信号设备的安全管控[J]. 甄尚霖.  中国新通信. 2019(05)
[2]关于铁路信号和通信系统的分析与研究[J]. 丁明月.  中国新通信. 2020(04)
[3]铁路信号设备故障诊断相关研究[J]. 任耀华.  中小企业管理与科技(下旬刊). 2020(08)
[4]计算机联锁系统的工程设计分析及维护要点[J]. 王玉麟.  铁道运营技术. 2019(01)
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: