田志富
中国水利水电第九工程局有限公司, 贵州 贵阳 550081
摘要:深基坑支护技术作为我国建筑工程建设过程中经常使用的一项技术,在当前施工过程中,这项技术越来越完善,它能够有效增强建筑物的稳定性。在施工期间应用该技术可以进一步确保施工质量达到相应的要求,防止对周围构筑产生影响。然而,当前这一技术仍处于发展阶段,在实践的过程中工作人员还需要结合施工的实际情况进行具体分析,从而让深基坑支护技术得到更好的应用,促进高层建筑的高效建设。
关键词:建筑工程;深基坑;支护施工;关键技术
中图分类号:TU753
文献标识码:A
引言
随着城市化建设速度的不断加快,城市土地资源供求矛盾日益突出,人们开始向空中和地下“索要”资源。这促进了我国建筑物向高层、复杂结构转变,对施工质量提出了更高的要求,尤其是大型地下空间资源的利用,对深基坑支护技术的要求更高。深基坑支护技术是地下空间资源利用的基础,也是“万丈高楼”的基础,因此加强深基坑支护技术的研究工作有助于提高建筑物整体施工质量的提高。
1建筑工程深基坑支护施工技术特征
1.1易受到周边环境的影响
建筑工程施工之前,有关人员需要对施工地及其周围的地址、水文条件等进行勘测,确认其地质条件等是否会对深基坑支护技术的应用产生影响。一般而言,应用深基坑支护技术的建筑工程通常地质条件比较复杂,填土中多含有碎石、石块等杂物,部分地区由于土壤性质的不同或受到天气等其他因素的影响会出现许多黏土,不仅会对施工地的地质条件产生影响,还会提高施工过程中出现较大空隙的概率,不利于深基坑支护技术的实施。在此之前,若相关人员勘测工作不到位,未对地质条件的勘测引起足够的重视,则会导致各种安全事故的发生。
1.2基坑深度有所增加,多处于地下水位
随着人们需求量的不断增加,建筑工程的施工高度也有所增加,在此情况下,地基所承载的负荷自然也会不断增加,需要增加基坑深度。因此,深基坑支护技术的应用难度也会受到影响。基于此,相关工作人员需要在施工过程中对灌注排桩工作引起重视,通过旋喷桩的设置对地下水进行控制,确保冠梁安装及使用过程中的稳定性。
1.3支护结构逐渐增加
我国建筑工程深基坑支护施工技术经过多年发展已经相对成熟,深基坑支护结构也由此不断增加。目前,建筑工程中深基坑支护结构主要有悬臂式支护结构、重力式挡土结构等多种结构。深基坑支护形式虽然没有支护结构多样化,但也有支挡型、加固型两种形式。总之,不论是支护结构的多样性还是支护形式的丰富都是为建筑工程的顺利进行奠定基础的,在深基坑支护施工过程中起到了十分重要的作用。
2建筑工程施工中深基坑支护的施工技术管理要点
2.1做好施工前准备工作
在深基坑支护施工期间,需要先做好施工现场的针对性分析,做好综合分析并明确最佳施工方案,在保障基坑支护施工体系的稳定性与安全性的同时,需要保障施工中放线测量工作的准确性,保障后续的基坑支护施工效益。在深基坑支护施工期间需要保障沉降的稳定性与速率平衡性,确保后续深基坑支护桩施工的综合效益。在支护桩施工期间,需要做好成孔与清孔的施工准备工作,在钢筋笼的制作、安装以及浇筑等施工环节都需要严格落实施工质量的控制措施,保障支护桩的成桩效果。
在支护桩施工期间,可以采用SMW工法施工,期间可以插入H型钢以完成水泥搅拌施工;在搅拌施工过程中需要确保搅拌的均匀性,在搅拌施工开始之前需要保障水泥泥浆的水灰比和水泥产量的比值;在深基坑支护施工期间需要做好施工技术的针对性控制,按照实际的情况落实针对性的施工调整措施,按照施工现场落实施工质量的控制,保障施工综合效益。
2.2分层支护技术
在深基坑支护工程中,由于深基坑面积大、深度达,因此导致单体的支护范围和效果十分有限,无法形成安全、稳定的支护效果,此时一般采用分层支护的方法。分层支护方法指的是将深基坑按照深度变化分解成若干个层次,在基坑开挖接近下一个层次时完成一次支护施工。分层支护技术有效规避了一次支护容易出现坍塌的弊端,并且在支护过程中形成了不同的分割板块,提高了深基坑的整体支护性能。此外,采用分层支护方法有效减缓了不同层次边坡坍塌的概率,具体的分层长度需结合建设区域的岩土工程条件、地层绕动力以及支护结构等因素计算得出。分层支护技术在高层建筑物或者大型地下商城建筑的深基坑支护方面的应用极为广阔,通过分层支护有效提高了深基坑的稳定性能,为建筑物的整体施工质量提升奠定了基础。
2.3地下连续墙支护技术
地下连续墙支护方法在泥浆护壁施工环境中的应用极为广泛,尤其是在地下水水位较高的砂土层或者软弱土层的深基坑支护中,支护过程一般采用分槽段方式进行,将钢筋混凝土连续墙的性能充分发挥出来。随着高层建筑物以及地下商城的建设,地下连续墙支护技术在大型建筑物深基坑支护中的应用越来越广泛。在具体的施工过程中,将地下连续墙插入施工深度80m以上、厚度约在1.4m的深层软土层中,使得地下连续墙形成挡墙维护结构,不仅能够提高地下连续墙结构的整体刚度,而且能够有效提高挡墙的防渗性能。此外,地下连续墙具有较高的刚度和承载力,适用于大型建筑的深基坑支护方法,但是该技术的支护成本较高,限制了该技术的推广使用范围。
2.4锚杆支护技术
锚杆支护技术在深基坑支护中应用较为广泛,该技术主要通过将锚杆打入岩土体或者岩石中,再借助其他加固方式进行加固边坡。锚杆支护技术具有支护性能好,空间占用率小和成本低的优势。锚杆支护一般包括开孔作业、安装锚杆、稳固作业三个步骤。在使用锚杆支护过程中首先在支护土体结构中开一系列的孔,将锚杆缓慢的打入土体中。为了确保锚杆与土体紧密连接,一般在锚杆安装完成后向孔内添加充料,将锚杆与土体之间的缝隙密封,提高锚杆的稳固效果。锚杆支护包括全长黏结型锚杆、摩擦型锚杆和预应力锚杆等,其中后者最为常见。
2.5重视基坑开挖支护施工监测
尽管现阶段科学技术较为发达,但建筑工程建设中应用基坑开挖支护技术依然存在诸多不稳定因素,容易引发工程建设事故或造成建筑结构不稳定等情况。为了使相关部门及技术人员对现场施工的安全风险进行预测,同时将建设质量及安全状况保持在可允许范围内,相关工作人员需要加大对基坑开挖支护施工监测环节的重视力度,引进技术程度高的现代检测设备对基坑开挖支护工程的各项工作进行合理检测与部署,特别是对支护结构的监测,有助于管理人员实时监测工程信息,预测工程状况,从而有针对性、及时地对施工方案进行调整,减少施工过程中的经济损失,确保建筑工程施工的顺利开展。若在检测过程中发现施工工程存在安全隐患,需要立即启动上文提到的基坑支护技术方案中制定的紧急预案,同时加大对紧急预案措施实施过程中的监督管理力度,将支护结构稳定性维持在标准范围内,满足政府相关部门及企业对建筑工程施工的技术要求与质量要求。
结束语
综上所述,深基坑支护技术在地基施工建设中具有关键作用,为提高工程的质量,就要根据工程施工的土地地质来选择合适的基坑技术。工程人员必须按照施工设计的要求进行施工,结合工程实施当中的实际情况来保障深基坑实施的安全性,从而提高施工效率,确保工程的顺利进行。
参考文献
[1]代金龙.建筑工程施工中深基坑支护的施工技术管理[J].科学技术创新,2020(18):116-117.
[2]陈忠锋.土建基础施工中深基坑支护施工技术的应用[J].工程技术研究,2019,4(9):53+55.
[3]赵鹏远.土建基础施工中的深基坑支护施工技术探索[J].产业与科技论坛,2020,19(10):68-69.