李兵
64038119890810****
摘要:近年来,我国经济社会持续发展,建筑土木工程的规模也不断扩大,土木工程作为其中的主要形式,其施工质量也愈发得到社会的广泛关注。土木工程是否稳定、是否符合质量控制要求,直接影响到后续使用环节的安全性。同时,由于建筑土木工程结构处于一定的外部环境之中,因此,降雨、降雪甚至台风、地震等自然因素均可能会对其整体环境造成威胁,其结构难免会受到不同程度的损伤,这就凸显了土木工程试验检测的重要性。
关键词:建筑土木工程;试验检测;措施分析
1建筑土木工程试验检测技术发展特点及发展中存在的不足
1.1建筑土木工程试验检测技术发展特点
第一,同其他发达国家相比,我国建筑土木工程起步及发展时间相对较晚,为了能够有效评定建筑质量,我国通过立法制定了很多质量评定规定。施工结构验收、设计规范及标准,但是从原则出发,并没有将方法和原则规范化;第二,目前建筑土木工程检测中应用较为广泛的技术方法包括破损检测、微破损检测和非破损检测等。破损检测或者微破碎检测均会对建筑结构产生一定的破坏,但是使用非破损检测技术并不会对建筑结构造成任何破坏,使用简单便捷。其中,使用红外线像技术对混凝土的强度进行检测,使用磁效应对钢筋的位置及直径进行有效检测。非破损检测能够维护原有建筑结构的完整性,使用便捷,具有非常高的准确度,但是因为该项技术为新型技术,工作量较大,导致工程成本大幅增加。其他两种方法会破坏建筑结构,因为这样才能完成检测的任务。
1.2建筑土木工程试验检测技术发展中存在的不足
虽然现如今我国建筑土木工程检测技术发展迅速,但是很多地方仍不完善,存在诸多不足,主要体现在下述几方面:第一,一些检测领域及实施规范并没有法律保障,系统研究少之又少,主要表现于检测结果和判定中不具备理论支持,同时检测参数结果也无法确定,致使工程检测处理不具规范性。第二,在设备、人员和技术管理方面,不具备统一的标准,多数设备往往无法达到合格标准。除此之外,相关工作人员不能把握好产品的负面破坏,例如取芯钻机并没有明确合理地规定,检测中将其用于检测可能会导致结果的不准确。现如今科技发展寻思,当下建筑土木工程开始广泛使用非破损检测技术,主要是因为电、磁、射线等学科及技术水平发展迅速。
2建筑土木工程试验检测措施分析
2.1直接测量技术
直接测量技术是一种较为传统的无损检测技术,其操作相对来说较为便捷,因此,一直以来应用较为广泛。其应用的对象主要是土木工程中某一个可以被直接测量的物理量,或是通过某些可以直接测量的量能够推断出来的情形。例如,混凝土的含水量直接影响到混凝土材料的强度,这一参数无法被直接测量,但是却可以通过其他物理量的测量而加以推断。试验检测中,可以通过对含水混凝土进行称重、再对烘干后的同一检测对象进行称重、最后得出相减结果的方式,判断混凝土材料的含水量。在实践中,通常以轻微损伤为代价,对待检测的建筑土木工程含水量进行判断,如在墙体取出少量样品作为研究对象等。再例如,电化学检测技术的应用同样也属于直接测量的范畴,该技术主要是通过在待检测的混凝土试样上安装电极,得出通过试样的电流并依照标准方法计算出腐蚀电流的数值,对土木工程混凝土结构中的钢筋腐蚀速率进行判断。但必须注意的是,受多种难以把控因素的影响,这种检测的最终精度无法得到有效保证。2.2负荷响应技术
负荷响应技术,顾名思义,是指通过测量待检测物体在负荷作用下的响应情况,对其质量进行判断的方法。
考虑到建筑土木工程的整体稳定性,如果需要产生的负荷量过大,那么显然不适宜运用该种方式。负荷响应技术中最具代表性的是振动分析技术。土木工程施工中选用的材料、结构设计方案及整体刚度决定了工程的本征振动频率,而在投入使用后,其面临着风力等各种扰动力的共同作用,因而其事实上处于一个一直振动的状态。通常来说,这些扰动力并没有特定的规则,属于广谱的范畴,其可以实现对建筑物本征振动频率的激发。振动分析技术主要是通过对频率测量值与建筑物本征频率的设计值或计算值的比较,以此推断出建筑物的线度、刚度、完整性、稳定性是否存在较大的宏观缺陷。该技术具有高效、操作简单的特点,尤其是随着土木工程体量的扩大,该技术的应用价值也日益凸显。
2.3应用探测媒介技术
当前,越来越多的无损检测技术需要应用探测媒介,这一媒介主要包括波与场两种形式。依照测量具体形式的不同,可以将该技术划分为主动检测技术与被动检测技术两大板块,前者的探测媒介由检测设备产生与发送,后者的探测媒介则来自探测对象本身。在后文中会选取常见的应用探测媒介技术加以具体探讨。
2.4利用电磁波的技术
利用电磁波的技术也被称为NDT-CE-EMT技术,是无损检测技术的重要分支,其探测媒介为微波频段的电磁波,频率多处于90~1000MHz,依照实际的检测情况加以确定。通过对电磁波的传播时间、反射技术、折射率等参数进行测量,对待测物体的性质进行判断。当前,土木工程试验检测中主要采用了地面穿透雷达这一利用电磁波的检测技术。在实践中可以发现,该技术的应用优势较为突出,其可以实现非接触甚至遥感检测,操作精度较高;该技术对于非金属材料的检测尤为适用,这也契合了土木工程结构中混凝土、砖等非金属材料占比较大的现实情况;同时,在应用该技术的过程中,无须对试样的表面状态进行特别的处理。但是值得注意的是,由于固有的屏蔽效应影响,地面穿透雷达技术无法检测金属内部以及金属平板后面的物体,在土木工程试验检测中的范围具有一定的局限性。
2.5利用光波、红外线的技术
①电子散斑干涉技术。该技术分为ESPI与SPSI两种。ESPI基于全息原理,将从物体反射回来的激光与参考光相干涉,干涉图样由CCD相机接收。将物体变形前后的干涉图相减,得到的条纹图反映了照明区域表面的位移场。利用相移技术,ESPI的分辨力能达到20nm数量级。ESPI是一种非接触的全场检测技术,用于监测漫反射表面的三维位移场。与ESPI不同,SPSI直接测量物体表面的应变而不是位移。物体表面的反射光被分成两束,并且在横向错开一个微小距离,然后再互相干涉。它对物体的刚体运动没有反应。
②热图成像技术。该技术又称IRT技术,其主要是利用了物质所具有的热传导性这一物理属性加以试验检测。通过热源对试样给予一定的热能,从而使得试样表面形成一定的温度分布,从而反映物体表层以及表层下面材料或结构的热传导性差异。可以看出,该种技术在应用到土木工程试验检测过程中时,无法获得土木结构深度即厚度的有关信息,但是在对建筑墙体保温功能的判定、探测墙体内部金属件的分布情况等方面具有较高的适用价值。
3结束语
综上所述,目前传统检测技术应无法满足建筑土木工程检测的要求,无损检测技术成为发展的主要趋势。将该项技术应用于建筑土木工程检测中能够保留建筑结构的完整性,评估施工质量。同时在检测前应根据工程实际情况,选择合适合理地检测技术,提高检测的准确性。
参考文献:
[1]黎凤珍.土木工程试验检测措施研究与分析[J].建筑土木工程技术与设计,2018,000(035):338.
[2]于昕鑫.土木工程试验检测措施研究与分析[J].科学技术创新,2018(18):108-109.
[3]赵金红.土木工程试验与检测技术研究[J].华东科技(综合),2019,000(003):1-1.
[4]李映春.土木工程试验检测与材料质量管理研究[J].商品与质量,2018,000(008):6.