浙江国丰集团有限公司 浙江省杭州市萧山区 311215
摘要:近些年城市中高楼大厦建筑需求量持续不断增加。建筑工程的快速发展也带动了深基坑支护施工技术的快速发展,这项技术的提高可以有效保护工程基础设施建设质量,避免建筑工程受周边环境的影响而产生一系列的风险,以更好地服务建筑工程的发展。
关键词:房建工程;深基坑;支护;施工技术
1深基坑支护施工技术的概念和特点
在建筑工程施工过程中,地下空间的地基施工部分是至关重要的,直接保障整个建筑工程的质量,为后续的地面施工部分打下良好基础。为了使地基工作顺利开展,需要使用深基坑支护技术来保障整体地基的稳定性和强度,避免在后续的地上施工过程中出现倒塌或变形的情况[1]。深基坑支护施工基本的设计方案并不相同,要根据整个建筑物项目的规模或是地基基坑的深度,包括当地的地下水位等多方面因素来确定出一个独特的执行方案,并且从制订出的多种方案中选择最科学的设计图纸。在后续的工作中,相应的施工人员需要按照实际情况的变化及时调整施工情况,对整体进程和成本进行把控。
深基坑支护工作由于作用关键,所影响的后续环节较为广泛,因此在施工过程当中需要注意其主要特点,其中最重要的是复杂性与地域性。复杂性是指整个建筑工程施工过程复杂的特点,尤其是对于基础工程的支护工作。工程中需要考虑众多的周边环境因素,例如要对土壤的压力进行计算,或者根据天气和季节的变化来判断深基坑支护工程的具体施工方法,因此在整个设计及施工再到后续检验的过程中,需要综合考量、宏观把控各项影响因素,这就导致整个施工过程是较为复杂的。其次是地域性特点。我国幅员辽阔,土地资源非常丰富,各地区土壤状况也存在很大的不同,对于深基坑来讲,不管是挖掘工作还是后续的支护工作与土壤都是密不可分的。因此,相关工作人员就需要对不同地区的天气和土壤进行不同的考量,这样才能根据地区和工程的实际情况制订出合适的深基坑支护施工方案,对后续环节也能起到事半功倍的效果。
2深基坑支护施工技术类型
2.1地下连续墙技术
地下连续墙技术主要应用于较为深层的软土地基以及砂土地基中,其具体技术包括导墙、泥浆护壁、成槽施工以及墙断连接等流程。在对导墙的施工中需将墙体的厚度控制在1.2m至1.5m的范围内,墙体的高度也需控制在地面10~15cm,在此基础上才能确保地下连续墙支护作用的有效发挥。需要注意的是,在对软土地基进行成槽施工时应选择普通型的导板抓斗,对砂土地基进行成槽施工时应选择加重型的液压导板抓斗,规范应用施工器械和施工技术,保证连续墙实现对土建工程的支护作用。该技术的优点在于施工产生的噪音比较小,具有较强的防渗性以及高强度的稳定性。
2.2土钉支护技术
土钉支护技术的应用是以土体原位为基础,对其进行混凝土喷射工作。在技术实施的过程中首先要确定好边坡的位置以及坡度的设置,做好对边坡的支护施工之后,才能为后续的技术施工提供保障。之后对边坡的土质进行判定,并以此明确合适的混凝土配比,确保混凝土和原土层的稳定结合。此外,还需注意的是,在对喷射孔位进行选择时,施工人员需将孔径控制在10mm以上,对开孔角度进行合理调整,提升技术的高效作用[2]。该技术的实际施工一般采用分段式的方式,此举是为了避免土体边壁发生坍塌状况,从而起到更好的稳基作用。
2.3钻孔灌注桩技术
钻孔灌装技术通常应用在以黏土、碎石、砂土以及岩石为基础的地基建设中,其具体应用方式分为两种,一种是泥浆护壁施工法,另一种是全套管施工法。在泥浆护壁施工法中,技术应用包括平整场地、埋设护筒、钻孔、放置钢筋笼、浇灌混凝土等环节,这种技术的应用程序比较简单,对工艺水平的要求也相对较低,但技术效果强度大,能达到很好的固基效果。
在全套管施工法中,技术应用的流程较多,除了上述泥浆护壁施工法中提到的环节,还包括压套管、放置套管以及拉拔套管等程序,其应用范围比较广,适用于各种土质地基,并且该技术下所灌注的混凝土桩刚度更大,稳定性更好,但是这种技术也存在一些不足,施工时间较长,钻孔速度较慢,还极易造成环境污染问题。
2.4高压旋喷桩技术
高压旋喷桩技术的适用土质范围较大,在对该技术的施工中应注意将钻孔的孔径控制在合理范围之内,一般其孔径要大于喷射管的外径,只有这样才能确保所喷射的浆液可以顺利进入土层中,并使喷射管中的浆液能正常收回,此外在对钻孔进行深钻时应保证孔径的垂直度,进行分段式的钻孔推进,防止出现斜度的偏差[3]。一旦在喷射过程中出现浆液泄漏的问题应及时停止充填,在喷射结束之后还需对灌浆泵以及浆体输送管道及时进行清理,避免出现凝固堵塞问题,影响后续喷射工作的应用。
3深基坑支护施工技术及其要点
3.1预防碰撞问题
在深基坑支护施工过程中,需要预防挖土设备的碰撞性问题,保障支撑的稳定性。为了进一步保障基坑内部的起吊作业水平,每一根钢管的支撑与钢围梁都应当采用钢丝绳进行固定处理,在支护桩与冠梁连接期间需要预防碰撞问题。在施工期间必须加强变形监测以及压力检测工作,如果单侧的压力出现异常,就会导致钢管支撑轴力的改变,此时需要落实变形测量与控制工作,及时发现横向与纵向的支撑结构改变问题,保障支护施工综合效益,提高深基坑的施工安全性与稳定性。
3.2注重内支撑布点控制
混凝土的内支护施工技术因为具有较高的刚度的特征,节点施工可以应用混凝土浇筑方式,所以不存在任何节点松动而引发的基坑位移问题。混凝土的内支撑施工布置主要是应用正交的对称性布置形式,这种布置形式对于支撑系统的支撑刚性要求相对较高,传力比较直接、受力点也比较清晰,在多种变形控制方面的要求相对较高[4]。钢支撑施工结构主要是由中间段、固定段、活动段构成,钢支撑的结构相对比较复杂,同时安装施工的要求也比较高。如果施工操作不合理很容易导致节点变形,从而造成传导力的改变。
3.3合理设计支撑参数
钢管的支撑设计应当保持合理性,原则上钢管的支撑施工需要以分段方式进行。在轴力设计方面,在钢支撑施工安装完成后,应当及时应用吊机将液压千斤顶放置在活动端并实现定位处理,按照设计的相关要求做好预应力的施加。在施工中可以通过特制千斤顶做好活动端的60%预应力施加,在取下千斤顶之后发挥时空效应,钢支撑的安装施工普遍在16h左右完成。在钢支撑施工期间,可能会出现松动而引发应力损失的现象,此时需要及时施加预应力,并进行压力检测,应用人工检查的方式保障施工质量水平。
总而言之,深基坑支护施工技术已经成为建筑工程领域中的一项关键技术,同时也是一项存在较大发展空间的关键技术,仍然需要不断发展完善。找出深基坑支护施工技术中存在的问题,分析讨论深基坑支护施工技术要点,促进技术发展,可以为我国建筑业的发展添砖加瓦,推动整个行业走向更高的高度。
参考文献:
[1]王平勋,李林焘.多支护模式的深基坑支护施工关键技术[J].四川建筑,2019,39(05):136-138.
[2]许鹏,师磊,陈雨庆.浅析深基坑支护结构的施工要素[J].建材与装饰,2019(30):43-44.
[3]张智鹏.深基坑支护技术现状及发展展望[J].科技经济导刊,2019,27(30):88.
[4]王一晓.土钉墙技术在深基坑支护中的应用探讨[J].住宅与房地产,2019(27):183+189.