方小莉
身份证号码:34290119770613****
摘要:水利工程是稳定生产和保障民生的重要基础工程,按照建设网络强国、数字中国、智慧社会的总体部署,加强新一代信息技术的应用,推进智慧水利工程建设,是全面落实“两新一重”要求、积极践行水利改革发展总基调、驱动水利现代化发展的必由之路。随着新一代信息技术的发展与应用,“大数据+行业”渗透融合全面展开,成为促进生产生活和社会管理方式创新变革的重要驱动。为全面推动落实党中央、国务院关于大数据发展的系列决策部署,水利部印发了《关于推进水利大数据的指导意见》,这标志着水利大数据发展进入了一个新阶段,在此背景下,充分认识大数据在水利改革发展中重要作用,分析水利大数据发展和应用面临的机遇与挑战,研究水利数据管理的有效途径,明确水利大数据发展和应用方向,显得尤为必要。
关键词:工程大数据;水利工程;建设管理
1 基本特征
随着大数据相关技术和应用的不断更新和发展,大数据的概念也在不断完善。业界普遍认为大数据具有4V特性,即海量的数据规模(Volume)、快速的数据流动(Velocity)、多样的数据类型(Variety)和巨大的数据价值(Value),这也成为判断是否构成大数据的基本指标[3]。工程包括隧洞、管道、泵站、闸门、水库、盾构、塔吊等工程对象,涉及安全、质量、进度、资金、环境、水情、水质、调度、运维等众多要素,所产生的数据纷繁复杂,具有来源多样、结构多维、更新实时等大数据基本特征,具体如下:
1)数据量大,来源及形式多样:工程数据来源广泛,涉及工程运行的各个阶段,包含工程全线数万台监测设备每秒产生的大量监测数据,以及涉及数十万模型构件的工程全线设计、施工BIM模型数据;同时,在工程建设运行管理过程中,还会产生大量的管理数据、调度运行数据、工程运维数据等,数据年增长总量约为1TB,且具有结构化、半结构化、非结构化的大数据结构特征。
2)数据持续增长,数据价值高:随着水利工程的建设运行,信息化应用的不断深入,监测密度与指标的不断完善,相应的建设运行数据增长速度也将不断加快,而这些数据是水利工程建设、管理及决策分析的依据,蕴含着巨大的数据价值。
3)数据动态变化,实时性强:水利工程数据具有明显的动态变化特征,如水量水质、水生态、水文地质条件等数据,在不同时间、不同空间均会呈现不同的动态变化规律;工程BIM模型具有明显的时空分布特征,需要随着工程进度不断地调整完善,如泵站、隧洞等工程对象在设计、施工、竣工阶段的模型均会呈现出不同的状态;同时,水利工程对于数据的实时性及准确性具有较高的要求,如工程安全监测、智慧工地监测、质量检测、调度运行等数据,是判别工程是否正常运行、是否启用应急预案等的依据。
4)数据相互影响,关联紧密:水利工程各类数据之间是相互影响、互相关联的。如工程进度与工程标段划分、现场设施配备状况、施工环境、天气情况等数据关联密切;再如工程险情与工程设计参数、水情、雨情、地形地貌、工程水文地质等数据息息相关。因此,工程各类型数据之间并不是完全独立的,而是相关影响、相互关联的,具有较为复杂的关系。
2 治理方法
工程大数据治理主要包括数据汇聚、数据清洗、数据融合、存储与服务等4个阶段。利用数据库开发技术、ETL技术、质量控制技术,实现数据的比对、清洗、建模、装载,针对数据进行归一化处理、一致性处理、图斑处理、实体编码与关联、质量检查,利用分布式存储与管理实现水利工程数据的存储与服务。
1)数据汇聚:通过Web Service,前置系统、FTP,网络爬虫、Excel文件上传等多种方法,实现工程各类监测感知、相关业务系统及其他外部系统产生的关系型、时序型、半结构化、非结构化及地理空间数据的汇聚。
2)数据清洗:工程大数据采用全流程式数据清洗模式,通过数据过滤、数据补全、数据转换、数据去重、数据校验等环节,清除垃圾数据、补全缺失数据、修改数据格式和内容错误,获取“干净”数据资源,提升数据质量,保证数据规范可用。
3)数据融合:利用工程数据融合模型,以多业务应用数据为管理对象,建立跨业务、跨组织的数据融合与关联,有效整合分散的工程数据资源。
4)存储与服务:通过分布式资源调度、分布式存储管理和分布式数据服务技术,完成结构化、半结构化和非结构化数据的统一存储、高效管理和资源服务。
3 辅助决策应用
在工程的大数据辅助决策应用中,通过构建工程安全、工程质量、工程进度、工程资金、工程调度、工程运维等大数据分析主题,利用人工智能方法,结合工程模型算法,实现了工程安全、质量、进度、资金、调度、运维的态势感知和趋势预测,为工程建设的精细化管理、工程调度的智能化决策、工程险情的自动化识别提供辅助决策支撑。
1)工程安全辅助决策:融合安全管理、安全监督、安全教育、安全隐患、安全监测等信息,运用工程安全大数据评价模型,基于数据驾驶舱可视化展现工程现场人、机、水工建筑物等的安全状态,实时构建工程安全的数字画像。通过模型推演分析,预测工程安全的未来趋势,结合工程安全的分级预警体系,动态提供安全预警,并精准定位工程的安全隐患,实现工程安全的有效管控。
2)工程质量辅助决策:融合质量计划、质量管理、质量检查、质量评定、质量检测等信息,运用工程质量大数据评价模型,综合评估工程质量,精准识别工程质量不达标部分,实现工程质量监督量化考核与有效管控。
3)工程进度辅助决策:融合进度计划、进度监控、资源监控、作业状态等信息,运用工程进度大数据评价模型,构建工程进度的数字画像,精准识别进度滞后的标段或工区。通过工程进度预测模型,推演工程进度未来趋势,辅助管理人员及时掌握进度态势,提前发现和处理工程进度风险,实现工程进度的有效管控。
4)工程资金辅助决策:融合工程总投资、工程概预算、工程变更、工程支付等信息,运用工程资金大数据评价模型,结合工程进度状态,对项目投资的完成比例进行分析,动态展现工程预付及实际支付的执行情况,实现对工程投资的全过程控制,辅助管理人员把控项目成本,实现工程资金的有效管控。
5)工程调度辅助决策:融合工程供水能力、用水计划、安全监测等信息,结合沿线各泵站流量、闸门开度、管道压力等数据,利用工程调度大数据模型算法形成调度方案,基于工程BIM+GIS平台对调度方案进行分析预演,下达调度指令,提高水量调度的经济性和安全性。
6)工程运维决策:融合工程安全监测、水量水质、巡查检修、工程调度等信息,利用工程运维大数据算法,评估工程水工建筑物、机电设备、金结设备的健康状态,预测工程设备设施的健康态势,精准诊断与异常识别,为工程安全运行提供保障。
4结语
大数据在水利工程领域的应用还处于初级阶段,以工程大数据的实际应用为例,分析了水利工程大数据的基本特征,初步研究了水利工程大数据的应用体系,包括水利工程大数据资源的7种分类、水利工程大数据治理的4个阶段、水利工程大数据辅助决策应用的6个维度,为探索行业内水利工程大数据的建设,充分挖掘水利工程大数据的价值,积极推进智慧水利工程建设提供了思路与经验。
参考文献
[1]蔡阳.以大数据促进水治理现代化[J].水利信息化,2017(4):6-10.
[2]曾焱,王爱莉,黄藏青.全国水利信息化发展“十三五”规划关键问题的研究与思考[J].水利信息化,2015(1):14-19.
[3]程春明,李蔚,宋旭.生态环境大数据建设的思考[J].中国环境管理,2015(6):9-13.