李益琴
绍兴鲁迅中学,浙江 绍兴 312030
摘要:匀速圆周运动速度方向变化的快慢是由向心加速度描述还是由角速度来描述,这个问题有很多老师进行过不同意见的阐述,本文尝试以此问题为引入,谈一谈对矢量方向变化快慢(尤其是在自然坐标系下)的理解。
关键词:矢量方向变化快慢;匀速圆周运动;向心加速度;角速度;自然坐标系。
一、角速度ω与物理量方向改变的快慢的关系之乱象
1.匀速圆周运动的速度(大小不变)方向改变快慢:
如图1所示,在同一个转台上的一条直径线上的A、B两位置上放置两物体,它们都随转台一起作匀速圆周运动。则两物体运动的速度方向变化快慢情况是否相同?
绝大多数的老师认为:A、B两物体的速度方向改变快慢程度显然“相等”:它们每过T(周期),方向改变2π,每过T/2,方向改变π,每过T/4,方向改变π/2………
最后有人总结为:描述圆周运动速度方向变化快慢的物理量是角速度ω。他们的“证明”如下:
从角速度的定义ω=Δθ/Δt,可以看出,角速度描述的是半径在单位时间内转过的角度,其实由于速度与半径方向垂直,物体在一定时间内转过的角度就是物体线速度的偏转角,物体线速度方向的改变,就是以偏转角度的形式来反映,故角速度描述的就是速度方向在单位时间内偏转的角度,也就是线速度方向变化的快慢。
另一种观点:速度改变的大小与方向不能人为的割裂开来,顺理不一定成章。
任何的变速运动都存在一个加速度,圆周运动中的向心加速度只是其中一种,既然是加速度,就必然严格按照加速度的定义去分析、去计算,加速度是速度变化量与所用时间的比值,速度变化量则应用矢量运算法则即平行四边形法则来进行,以上事实已经证明,矢量的大小、方向共同决定着速度变化量的大小及方向,既使不变化,也仍然起作用,绝不可以忽视,更不能将大小与方向人为的割裂开来,速度变化量正是正确确定加速度的基础,对于加速度的理解必然是同样的道理。
这显然就是从定义到定义的“证明”。
我们再来看其它情景:
2.对于匀速圆周运动的位置矢量,显然有大小不变,方向时刻改变,于是有:它们每过T(周期),方向改变2π,每过T/2,方向改变π,每过T/4,方向改变π/2………. 我们是不是也可总结为:描述圆周运动位置矢量方向变化快慢的物理量是角速度ω。
3.考虑匀速圆周运动的加速度矢量(大小不变)方向改变快慢
对于匀速圆周运动的加速度矢量,显然有大小不变,方向时刻改变,于是有:它们每过T(周期),方向改变2π,每过T/2,方向改变π,每过T/4,方向改变π/2………. 我们是不是也可总结为:描述圆周运动加速度矢量方向变化快慢(也即加加速度J)的物理量还是角速度ω。
………………
我们似乎有两个方面的困惑:
一方面有描述匀速圆周运动任何物理量的方向变化快慢的物理量都是角速度ω。另一方面匀速圆周运动的向心加速度无法描述速度方向变化(大小不变)快慢程度,也就是加速度不能描述速度变化快慢程度。
但现行教材中有这样一段叙述:“向心力的作用只是改变速度的方向,不改变速度的大小.”也就是说向心加速度的作用只是改变速度的方向,不改变速度的大小.于是我们理应得出:向心加速度大的圆周运动,其速度方向改变得快.但这一结论似乎有异议,而且至今仍在争论。
实际真是这样的吗?
二、物理量变化率的理解的进一步确认
导致上述矛盾的根本原因是我们对“变化率”与变化快慢的理解不同所致。“变化快慢”是中华文化中有关运动的定性描述,而“变化率”是西方科学上严格的定量的定义。由于变化率即导数在中学要到高三才学,且目前还是选学内容,在高一物理的“变化快慢”就只能是半定量的理解,处理起来非常麻烦。例如,“瞬时速度”概念,人民教育出版社的高中物理教材,从1983年到2004年间的定义是:质点在某一时刻或在某一位置时的运动快慢叫做瞬时速度(注:这是一个逻辑循环的最荒唐的“定义”之一)-----尽管目前教材早已改掉了,但有绝大部分的教师、绝大部分的辅导教材都仍用这一“定义”。
对于矢量,有必要明确下列内容:
1.矢量的定义:既具有大小,又有方向的量,且在合成时要满足平行四边形定则。
由此,我们得到:
在匀速圆周运动中,只有大小是1的单位矢量的变化率(即变化快慢)才是ω。
讨论:
①匀速圆周运动时, Vr=0,Vτ=V(大小不变),所以
而匀速圆周运动时的位置矢量大小、速度大小、加速度大小都保持不变,因而它们的变化率都是对应矢量的方向改变快慢程度。而且其大小为对应物理量与角速度之乘积。也即:匀速圆周运动
位置矢量的变化率大小,就是位置矢量大小r与角速度之积ωr,表示位置矢量方向变化的快慢程度;
速度矢量的变化率大小,就是速度矢量大小V与角速度之积ωV=ω2r,表示速度矢量方向变化的快慢程度;
加速度矢量的变化率大小,就是加速度矢量大小ω2r与角速度ω之积ωa=ω3r,表示加速度矢量方向变化的快慢程度.
②变速圆周运动时, r=常量(切向速度Vτ大小改变, 法向速度Vn=0),所以
关于法向加速度,教材上是直接给出结论:
一般圆周运动中,在某一位置上的向心加速度大小,也可由V2/r(其实就是Vτω),只不过V是对应位置的瞬时速度。
至此,我们可清晰地看到:在匀速圆周运动中,
1.位置矢量的变化率等于rω(其实就是速度),此时由于位置矢量的大小不变,也可以说成:位置矢量方向变化快慢程度的物理量是rω;
2.速度矢量的变化率等于Vω(其实就是向心加速度ω2r),此时由于速度矢量的大小不变,也可以说成:速度方向变化快慢程度的物理量是Vω;最确切的说法是:由于速度方向改变而产生加速度是Vω。
3.加速度矢量的变化率等于aω(其实就是加加速度ω3r),此时由于加速度矢量的大小不变,也可以说成:加速度方向变化快慢程度的物理量是aω;
4.那个物理量变化率等于ω?除非是数学上的单位矢量,而在实际的匀速圆周运动中,根本不存在这一“抽象”的单位矢量。(注:单位矢量是数学中的理想抽象模型,完全是一种)
综上所述,导致人们对“方向变化快慢程度”不好理解的本质原因是中学里的“变化率”没有展开讨论,或者西方的微积分还没有深入到我们的思想深处,甚至还没有到我们的教师的思想中----我们自己其实还没有搞懂。
三、两种坐标系下的加速度计算的讨论与比较
1、平抛运动:
(1)直角坐标系下的运动规律:
两者比较,显然用直角坐标系处理较方便。
2、小船运动:(如图4所示)
再来计算加速度
(2)加速度(如图5所示
3、光斑在地上运动
如图6所示,当水平地面上某点沿竖直向上射出一激光束,在距地面h处有一平面镜,激光射到镜上的O点,今让镜子绕O点沿逆时针以角速度匀速转动,激光的反射光线在地面上形成一个亮斑P,求在t时刻P点的速度与加速度。
要算速度比较简单,常见的是下面几种情况:
若要计算加速度,比较复杂,现举三例:
(1)切向法向分解法(如图7所示):由于,所以,再求(方向径向向外),
虽然计算复杂,但是结论明了。处理的关键就是单位矢量及其变化率(导数)的操作。正是由于这一原因,导致中学教师对于物理量的方向变化快慢的理解有失偏颇,甚至出现了“相互矛盾”的结论。