风力发电机状态监测与故障诊断技术分析

发表时间:2021/4/20   来源:《中国电业》2021年第2期   作者:陈学永
[导读] 风能作为可再生能源,利用风能进行发电不但能够降低对资源
        陈学永
        中电内蒙古风力发电有限公司  内蒙古乌兰察布市  013600
         
        摘要:风能作为可再生能源,利用风能进行发电不但能够降低对资源的消耗,缓解我国资源紧张问题,而且可大大减少对环境造成的污染,为推动我国能源消费结构也作出了巨大的贡献。风力发电机是进行风能发电的核心设备,主要是将动能转化为机械能,然后再将机械能转换为电能。这一系列的过程需要通过发电机组内部所有元部件的共同配合完成,但是由于风电场一般都位于比较偏远的地区,发电机在运行过程中受环境影响较大,一旦发生故障,将会造成严重的经济损失。
        关键词:风力发电机;状态监测;故障诊断;技术分析
        1风力发电机诊测时会出现的问题
        1.1通过发电机振动、温度和转速等诊断机械故障
        发电机输出的电流、电压和功率如果不一样,那就和发电机的机械故障有密切的关系。高频振动一般都是由轴承故障引起的。高频故障的转速很高,达到一千多,要想获得轴承故障特征信号,可以通过振动传感器来取得轴承振动信号,然后对这一信号进行处理,以此解决机械故障中的轴承故障。对轴承故障的诊断可以使用峰值能量法、包络解调法、小波分析法以及基于快速傅立叶变换的故障诊断法。振动频率较低是因为轴系不对准、转子质量不平衡、机座松动等,要想获得这些信息,需要对振动的信号进行滤波、放大处理,然后进行傅立叶交换。在运行过程中也会出现发电机转子偏心故障和发电机定子和转子之间气隙不均衡的现象,这两个故障是由磨损和温度升高等原因造成的。谐波成分很重要,通过对发电机定子输出电流、电压、功率等信号中的谐波成分监测,可以诊断电机转子的偏心故障。当发电机转子和轴承不能正常运转时,可以通过不断的小波变换给发电机的输出功率发出信号。一旦发生了不太严重的机械故障,气隙振动也会被发电机转轴的振动引发,然后发电机转子与定子间气隙磁通出现不平衡。定子的电流解析能够解决转轴的振动故障。
        1.2电气故障发出信号的控制
        首先对一些参量的信号开展测验,发出的信号有发电机定子的线圈温度、定子的电压、定子与转子的电流、发电机输出功率以及转子转速等,然后对其进行处理,最后进行识别。要想找到电气不运作的原因,可以使用定子电流检测方式、一小部分放电的监测方式、振动检测法等。转子或定子线圈短路故障根据研究发现是发电机转子、定子线圈绝缘损坏引起的,包括匝间短路、相间短路、层间短路等问题,所以,短路故障监测和诊断是研究的重点。为了监测发电机的状态,可以对电压、电流和转子扭矩进行检测。要想对发电机状态实施更全面的监测,还可以对大气温度和大气压力等进行测量。在转子电流信号中会出现故障谐波分量,这是由于发电机定子出现了匝间短路,定子电流的对称性被打破,生成一个反向的旋转磁场。对于发电器每匝之间短路事件的检测包括负序的电流、电流的谐波成分、电流Park的矢量运行路距等。在短路匝数比较少时,定子电流变化量微小,这种情况很难检测出谐波成分。定子单相、双相、三相的短路这3种情况被称作相间的短路现象。要想更好地识别发电机的相间短路故障,可以采集发电机的电流、温度和振动等信息。采集和相间短路有很大联系,当发生相间短路时,采集就会产生变化。
        2状态监测和故障诊断技术在风力发电机中的应用
        2.1齿轮箱状态监测和故障诊断
        齿轮箱作为风力发电机中连接主轴和发电机的重要部件,其内部结构和受力情况比较复杂,尤其是在运行工况和载荷发生变化的情况下,发生故障的几率会有所增加。由于齿轮箱故障而导致风力发电机故障的占比较大,不仅维修成本高,且因为停机所造成的发电量损失巨大,所以对齿轮箱进行状态监测和故障诊断非常重要。齿轮和轴承是齿轮箱比较常见的故障部位,断齿、齿面疲劳、胶合是齿轮常见故障类型,磨损、点蚀、裂纹、表面剥落是轴承常见故障类型,任何一种故障类型都会影响到齿轮箱的正常运转。随着风力发电机规模的扩大,对齿轮箱的性能要求也越来越高,所以要保证齿轮箱的安全可靠运行。

振动监测和温度监测在齿轮箱状态监测中比较常用,振动监测主要是利用振动测量仪器对齿轮箱的振动频率进行检测纪录,然后将测得的实际运行数据与设计数据进行对比分析,从而发现齿轮箱中各部件的运行状态。故障特征频率是判断齿轮和轴承健康状态的重要指标,所以通过时域信号统计能够初步诊断出齿轮箱故障点及原因,然后再利用快速傅里叶变换和功率谱对初步诊断的结果进行再次确认。温度测量法主要是通过温度传感器对齿轮箱零部件运行过程中的温度变化进行识别和诊断,通过与常态进行对比,能够及时获知齿轮箱零部件的状态信息。
        2.2叶片状态监测和故障诊断
        叶片在风力发电机中主要是吸收风能,长期处于露天环境下,对叶片造成的损伤较大。叶片长度一般在30~40m,所以在运行过程中出现的颤振会导致叶片出现疲劳裂纹,如果在近海地区还会受到海水湿气的腐蚀,阵风和雷击也是影响叶片运行安全的重要因素。为了保证叶片运行的安全性,对叶片的材料、质量和体积都有严格的要求。一旦叶片发生故障,不仅会造成叶片本身的损坏,还会威胁到整机运行的安全性。对叶片的状态监测和故障诊断主要是通过应力应变测量来实现,但是受到叶片材料以及运行环境的影响,对应力应变传感器有一定的要求。光纤光栅传感器因为具有较好的抗电磁干扰、抗腐蚀、尺寸小、寿命长等优点,比较适用于叶片的应力应变检测,在预测叶片使用寿命中具有重要作用。为了弥补光纤光栅传感器的不足,还可将声发射检测和红外成像检测结合运用。利用声发射检测能够检测出叶片因与空气冲击导致的内部应力集中断裂以及变形时释放的应力波,以此来判断叶片健康状况。红外成像检测技术可对叶片表面裂纹、剥落等呈现的热辐射能量分布状态来识别叶片的健康状态。
        2.3发电机状态监测和故障诊断
        发电机是风力发电机中的核心部件,其主要功能是将机械能转换为电能。由于发电机长期处于工况变化以及电磁环境中,且由于机组规模的扩大对发电机的密封保护增加一定的难度,所以经常会出现振动过大、发电机过热、轴承过热、转子/定子线圈短路等故障,其中轴承故障、定子故障及转子故障占据较大比例。对于发电机的状态监测和故障诊断主要是对转子/定子电流信号、电压信号以及输出功率信号进行状态监测,通过对电流信号的时域分析获取幅值数据信息,然后经过谐波分量的变化来判断发电机故障类型。比如对转子偏心故障的识别中,通过输出电流、电压、功率等信号的获取,能够判断出是轴承过度磨损还是其他故障类型。
        2.4其他部件的状态监测和故障诊断
        电气系统也是风力发电机的重要组成部分,通过变频器等电气设备向电网输送电能,并且对电气系统进行相应的控制。电气系统中比较常见的故障主要有短路、过电压、过电流及过温等,任何故障的发生都可能造成发电机的损坏。根据电气系统的故障特点,主要是采取性能参数检测的方法,对输出电压、电流、功率及温度等数据进行监测,然后与标准值进行对比,从而判断电气系统的健康状态。对于液压传动系统的状态监测和故障诊断主要是通过油液监测的方法来完成,对润滑油及液压油中的颗粒物进行检测,通过颗粒的形状、粒径、状态等来判断液压系统中出现故障的部位,从而采取相应的防控手段。
        3结语
        风力发电机的状态会直接影响人们的生活质量,希望未来风力发电机状态监测和故障诊断技术能够得到普及。
        参考文献
        [1]詹辉.风力发电机状态监测与故障诊断技术[J].设备管理与维修,2018(19):83-84.
        [2]郜士祥.风力发电机状态监测与故障诊断技术综述[J].湖北农机化,2018(05):48-49.
        [3]吴艳标.风力发电机状态监测和故障诊断技术的研究[J].城市建设理论研究(电子版),2018(07):1.
        [4]赵勇,韩斌,房刚利.风力发电机状态监测与故障诊断技术综述[J].热力发电,2016,45(10):1-5.
       
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: