转化思想在初中数学解题中的应用

发表时间:2021/4/21   来源:《中国教师》2021年第18卷第2期   作者:崔怀媛
[导读] 转化思想在数学教学中有非常重要的意义,教师可以结合自己的教学经验来制订合理的教学方案,

        崔怀媛
        东营市东营区实验中学  257000
        摘要:转化思想在数学教学中有非常重要的意义,教师可以结合自己的教学经验来制订合理的教学方案,同时也应当关注学生个人的性格特点。将相同的数学知识、数学问题从另一个角度思考,将其转换成语言表达的方式。这样一来,学生接受起来会更容易,学习的难度也会大大降低。与此同时,教师也可以充分地将学生的学习积极性调动起来,让学生主动参与到学习中去。
        关键词:转化思想 初中数学 解题应用
引言
        数学学科是初中学习的重点,教师在进行教学时不仅要提高学生的成绩,同时还要注重学生数学思维能力的培养,提高学生的学习兴趣。转化思想在初中解题中是非常重要的思想之一,因此教师在日常教学中,必须重点关注学生转化思想的思维形成。
一、转化思想在数学解题中的重要性
        转化思想在数学学科的学习中体现得淋漓尽致,它不仅是一种非常高效的数学学习方法,更是学生在长期学习过程中形成的一种数学思维方式。转化思想的应用对学生数学思维能力和创新能力的提升有非常重要的意义。初中阶段是一个人素质提升和思维习惯培养的关键时期,是学生转化思想和数学思维能力形成的最佳阶段。教师在教学过程中应当注意转化思想的应用,结合学生的年龄特点,为学生创设良好的数学思维氛围,让学生通过初中数学的学习,掌握数学元素之间的规律与联系,进而培养学生的数学学科素养。教师在教学时应当引导学生利用转化思想来解题,在解题的过程中不断地思考,形成新的思路。
二、转化思想在初中数学解题中的应用
        (一)建构新旧知识联系,将解题过程简单化
        学习的最终目标是实现知识的迁移,知识迁移的实质就是能够将旧知识转化为新知识,在旧知识的基础上与新知识建立联系,从而达到理解新知识的过程,在知识迁移的过程中就利用了数学中的转化思想。化思想能够让学生利用原来的旧知识,从旧的知识中构建与新知识的联系,将新旧知识相似的知识点运用到对新知识的理解上,从而降低学习新知识的难度和陌生度,提高学习效率。数学思维能力的培养中对学习数学非常关键,教师在教授学生数学知识时,还要培养学生的数学思维能力,转化思想就是一个非常重要的数学思维思想。初中数学题目内容繁杂多变,考察形式种类繁多,学生经常要面对陌生的数学问题,在学生面对陌生数学问题时,就可以运用转化思想来更好地进行问题解决。例如学生在学习新知识时,教师就可以先给学生复习与新知识有关的旧知识,从而再进一步地给学生讲述新知识,让学生能够在旧知识的基础上对新知识产生更多的理解,从而达到提高学生学习效率,提高数学成绩的目的。而且在进行新旧知识的联系过程中,学生能够对新旧知识的相同点和不同点有清晰的认识,在进行有关新知识的解题运用时也能够很好地进行转化和理解。
        (二)数形转化
        初中数学教学涉及的内容非常多,教师不能仅仅关注教材上的内容,还应当结合学生的年龄特点选择合理的教学方式,从而全面提升学生的知识和技能,让学生实现个人的全面发展。数学转化思想的形成是一个漫长的过程,教师不仅要在数学教学中向学生渗透转化思想,还应当鼓励学生主动地复习。知识巩固的过程就是再思考的过程,正所谓“温故而知新”说的就是这个道理,回顾旧知识的过程也是思维探究的过程。在复习课上,教师可以从学生产生“错误”或者“想不出来”的原因进行分析。通过分析发现,很多学生对某些习题中相关的知识点还是很熟悉的,只是因为没有正确的数学思想方法作为支撑,在解题时难免会遇到困难。

数学学科是一门非常灵活的学科,在解题时我们不难发现,同一道题目会有很多种解题思路。只要我们在解题时能巧妙地对数学命题进行等价转化或非等价转化,就可以将问题在转化的过程中进行解决。转化思想其实在数学学习过程中应用频率非常高。如,在运用换元法解方程时,对于难度系数比较大的高次方程,我们可以利用换元的思想将其转化为低次方程,把分式方程转化为整式方程,将复杂的方程转化为简单方程,这样一来,问题就迎刃而解。不仅如此,我们也可以在因式分解、化简求值、几何证明,特别是在解综合题的过程中应用转化思想,让学生从更深的层次去揭示、把握数学知识、方法之间的内在联系,从而树立辩证的观点,经过长期的实践养成自己的学习习惯,提升自身分析问题和解决问题的能力。下面就从几个具体的例子来探析如何用转化思想解决数学问题。在做题的过程中,我们经常会遇到一些结构复杂的数学问题。这时,如果使用常规的方法来解题,不仅解题过程繁琐、解题效率不高,解题的质量也难以保证。因此,我们就可以从其结构入手,将结构进行转化,找到新的解题思路。例如,若|a|=2,则a=对于这个数学问题,我们可以将其转化为数轴来进行表达。首先,我们可以将原点作为划分区域,让学生清楚地明白绝对值的含义和应用。再如,坐标(x,3)中,x取-3,-2,-1,0,1,2,3,所表示的点是否在一条直线上,与x轴有什么联系?针对这种情况,学生往往会觉得摸不着头脑,没有解题思路。这时,我们就可以应用转化思想画出平面坐标,解题思路自然也会清晰。
        (三)运用转化思想,逐步增强思维能力
        从本质上来看,数学中的转化思维是将新的知识或者新的方法进行转移的思想方式。转化思想开拓学生的数学思维同时,还可以给学生提供新的解决问题的方法,从而让学生找到解决问题的关键。在实际的数学教学中,教师不但要考虑教学目标和学生的学习成绩,还要考虑学生所处于的年龄,理解和尊重学生的差异性。以《三角函数》这一章的教学为例,这一章节的重点在于对三角公式的灵活应用,学生之前没有相关知识的学习,基础较差,所以教师应该从头开始细致地进行教学。在教学时,教师可以利用“微课”视频进行教学,学生利用“微课”教学进行领悟,“微课”课堂的核心内容是以教学短视频为主,让学生进行知识的再领悟。通过观看“微课”视频让学生对三角函数有一个概念,能够有框架有条理性地进行学习,然后再利用视频的归纳性,给学生举例出有关正弦函数、余弦函数、正切函数的三个特点讲解三个函数的基本图像的变化以及变化规律。而且在进行三角函数的解题时,教师要将正弦函数、余弦函数、正切函数三类函数的图形特点都给学生一一地进行讲解,增强学生对函数的概念及其性质,与此同时教师还可以制作一张图表,整理出三个函数的不同特点和相同性,让学生增强三函数之间的联系,以这样的方式增强学生对学习数学的学习兴趣和效率。在对三角函数共识和计算过程有了初步了解后,教师可以给学生列举生活中的例子,如利用公式计算一个建筑物的高度等,利用这样比较基础的问题,可以让学生利用公式对函数进行具体问题的解决。
结束语
        总而言之,转化思想在初中数学的学习中是必不可少的,在初中的解题过程中也发挥着十分重要的作用。转化思想作为初中数学教学中的一种核心思想,始终贯穿在初中数学教学过程中。教师应当在日常教学时结合学生的特点以及教学的基本内容来设定合理的数学问题,充分调动学生学习的积极性,让其利用所学知识和转化思想来解决各种实际问题。
参考文献
[1]林杰.浅谈转化思想在初中数学教学中的应用[A].教育部基础教育课程改革研究中心.2020年“区域优质教育资源的整合研究”研讨会论文集[C].教育部基础教育课程改革研究中心:教育部基础教育课程改革研究中心,2020:2.
[2]吴建忠.初中数学解题中转化思想的有效应用[J].数学大世界(中旬),2020(09):81.
[3]石香云.转化思想在初中数学解题中的运用[J].知识窗(教师版),2020(06):106.
[4]林霞.转化思想在初中数学解题教学中的运用[J].数理化解题研究,2020(20):13-14.
[5]王友楠.转化思想在初中数学解题中的妙用[J].中学生数理化(教与学),2020(07):92.
       
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: