徐易楠
黑龙江建龙钢铁有限公司 黑龙江省双鸭山市 155100
摘要:在电气化自动控制中应用人工智能技术不仅能显著提升电气自动化的控制质量,还可以降低电气自动化所投入的人力、物力。人工智能技术能够优化电气设备设计、提升电气控制质量、进行精准的电气故障诊断,为电气自动化控制的正常运行提供保障。因此,针对人工智能技术在电气化自动控制中的应用进行研究具有重要的现实意义。
关键词:人工智能技术;电气自动化;应用
在19世纪英国著名物理学家、化学家法拉第,经过无数次的实验分析后,终于发现电磁感应定律,并在此基础上研发出电动机、发电机等多种电气设备,对于人类文明的发展做出了巨大贡献,这也标志着社会正式进入电气文明时代。随着科学技术的发展,电气技术不断的融合创新,一次次在现有的基础上进行优化完善,在融入信息化技术和计算机技术以后,实现了电气自动化控制,加速工业化的发展进程。在实际工作中,人工智能技术的应用,完全可以实现由机械设备代替人工操作,很大程度地促进我国电气自动化这一高危生产行业的健康发展。
1 人工智能技术及其应用优势
人工智能技术是利用计算机信息控制系统以及数据进行智能化处理的形式。伴随着互联网技术与计算机技术的成熟,人工智能技术已经成为人们生产生活中不可或缺的重要技术。人工智能技术在综合计算机软件与程序控制进行智能化控制的基础上,也可以进行数据处理与运用,完成信息传递工作。因此,将人工智能技术应用在电气自动化控制中能够提高电气自动化控制的效率与质量。人工智能技术应用在电气自动化控制中的优势明显,主要表现在以下几个方面:第一,降低设计难度。传统控制器在应用过程中需要根据具体模型来进行设计,其中参数设定、变量数据需要根据实际情况来进行调整。且需要设计分配电路、排除干扰等一系列问题,设计难度较大。而人工智能技术的应用则大幅降低了控制设计难度,利用AI函数可以进行快速设定,提升了控制设计效率。第二,提高自动化控制效率。人工智能技术下数据的收集与处理都可以自动完成,且在数据采集过程中可以自动保存数据并处理,从而显著提升电气自动化的控制效率。第三,提高产品质量。传统电气自动化控制需要人工控制,因而需要更多人力参与到产品制造中。在产品制造过程中有一定概率由于操作人员的疏忽导致所生产的产品出现次品甚至废品。基于人工智能技术就能显著减少人工疏忽导致的失误。基于计算机技术的人工智能技术所开展的电气自动化控制能够显著提升产品质量。
2 人工智能技术在电气自动化控制中的应用
2.1 人工智能技术在电气控制中的应用
在电气自动化控制中电气控制是最为核心的环节,人工智能技术的应用能够提升控制效率与精度,且能够应对庞大的信息数据以及复杂的工作流程。模糊控制是基于人工智能技术下的常用电气控制技术之一。模糊控制是基于模糊推理与模糊语言理论而形成的控制形式,结合计算机技术形成闭环结构的控制系统。其结构核心为基于人工智能技术的模糊控制设备,这也是模糊控制与其他控制方式差别之处。模糊控制系统结构分为模糊控制器、输入/输出接口、执行机构、控制对象以及测量设备。其中,控制对象的容纳范围十分广泛,不论是确定、模糊,单变量、多变量,定常、时变,线性、非线性均可以作为控制对象。无法精准建立数学模型的对象更加适合应用模糊控制技术;执行机构不仅可以使用直流电动机、步进电动机等,还可以使用气动调节阀、液压阀等;模糊控制器则是模糊控制技术的核心元件,是一种应用模糊知识标识与规则推理的控制设备;输入/输出接口在模糊控制系统中由于大多数控制对象的控制量与可观测状态为模拟量,模糊控制系统也需要使用A/D转换设备。在模糊控制系统中还需要配备适用于模糊逻辑处理的结构,该结构可被认为是输入/输出接口。除了模糊控制形式外,专家控制、神经网络控制都是基于人工智能技术下的电气自动化控制形式。
如专家控制基于专业理论技术,结合专业生产经验,对电气自动化进行的一种智能控制。主体构成由知识库与推理机制,通过对知识的组织排列,根据一定策略选择合适的规则进行推理,以实现对对象的控制。专家控制较为灵活,能够适应对象特性与环境的改变。基于专家控制形式,系统能够在偏差较大、非线性的环境下安全稳定地开展工作,鲁棒性强。
2.2 人工智能技术在电气故障诊断中的应用
电气自动化控制系统在工作过程中,可能由于人为疏忽、设备故障等因素导致控制系统出现故障。虽然传统控制方式也可以诊断出故障区域以及导致故障的原因,但需要耗费大量时间与人力、物力,且精确度较低(如可以使用故障报警设备或人工排查手段来检查故障,但部分故障仍然无法被发现)。人工智能技术的应用则可以有效解决这一问题。将人工智能技术应用在电气故障诊断中能够利用计算机技术、智能控制系统对电气控制设备进行分析,第一时间发现电气设备异常情况并及时处理。例如,传统故障诊断方式下要发现变压器故障则需要收集变压器气体,再对气体进行检测方可获取变压器故障情况;但人工智能技术则可以利用网络神经技术对故障进行判断,精确分析出故障问题所在,且对数据进行分析后找到最佳的解决方案,有效提升了故障检测效率与质量。
2.3 人工智能技术在电气设备中的应用
人工智能技术应用在电气设备方面是提升电气自动化控制质量的基础。人工智能技术可以被用于电气设备设计。电气设备设计是一项较为繁杂的工作,设计过程中需要综合电磁场、电机等知识,且需要具备丰富的设计经验。传统电气设备设计均是基于丰富的设计经验与繁杂的实验过程,设计出最优方案难度较大、成本较高。应用人工智能技术则可以使用CAD技术来进行电气设备设计,减少电气设备设计周期。另外,人工智能技术还能够提升电气设备的工作效率,通过智能技术来提高电气设备工作的精确度。
2.4 人工智能实现操作控制以及故障录制
传统电焊机精度控制过程中,大多采取人工控制参数的方式,通过设备统一完成电镀操作,但是电镀产品难以保证相关参数一致,因此选用单一参数来对电镀精度进行控制,避免产品报废的情况发生。应用人工智能技术,利用计算机自身的扫描功能来记录并模仿传统员工的操作行为,并通过AI算法将所测量的参数传输到控制中心,由电镀系统发送指令,实现自动化电镀操作,而且等待产品出现后会再一次对其进行扫描,获取到相关的产品参数,基于计算机技术来进行分析,判断产品是否需要再次加工。另一方面,在电焊机自我检修时,由于需要检修的电焊机数量较多,采取人工的方式会消耗大量人力资源,而且工作效率难以保证。引入AI算法后,基于大数据思想来安装分布式机械臂,并对其进行控制编程,让其对传统员工的工作行为进行模仿,而且通过扫描仪可以对机械臂的作业全过程进行录制。
3 结束语
人工智能技术在电气自动化控制中的应用不仅能够提升系统工作的可靠性与稳定性,还能够提升产品生产质量、降低生产运行成本,推动电气自动化控制水平的发展。在电气自动化控制未来的发展过程中需要持续强化对人工智能技术研发,进而提高电气自动化控制的效率与质量。
参考文献
[1]汪万彩.人工智能技术在电气自动化控制中的应用探讨[J].机电信息,2013(12):125-125.
[2]姜关胜.人工智能技术在电气自动化控制中的应用问题探讨[J].电子技术与软件工程,2015(20):150.
[3] 侯国庆.人工智能技术在电气自动化控制中的运用探究[J].百科论坛电子杂志,2019(8):321-322.
[4]纪文革.人工智能技术在电气自动化控制中的应用思路分析[J].电子测试,2014(3):137-138.