追本溯源,探教材之惑——以《5.3.2各象限角的三角函数值的正负号》为例

发表时间:2021/4/25   来源:《中小学教育》2021年1月第3期   作者:谢玲玲
[导读] 2021年1月4日,我校组织本学期青年教师汇报课比赛,按照规则我们需要在三天前上报当天上课的课题
        谢玲玲
        温州市财税会计学校  325000

一、选课背景
        2021年1月4日,我校组织本学期青年教师汇报课比赛,按照规则我们需要在三天前上报当天上课的课题。然而由于数学学科的特殊性要求,根据教学计划的安排,于当天我的两个班级的教学进度正好是第五章《三角函数》第三节《任意角的三角函数》的第二课时《5.3.2 各象限角的三角函数值的正负号》。因此,我选择了本节内容作为我的课题。
二、教学分析
        本章《三角函数》是在学了集合和函数之后的又一重要章节,是对初中锐角三角函数的一个延伸和推广,主要是推广到任意角三角函数.也是对集合与函数的知识的又一渗透。本节课的前一个课时是对任意角三角函数的定义,后一个课时是讲授特殊角的三角函数值。因此本节课是对任意角三角函数知识点的深入,有利于学生进一步学习下一个课时,有着承上启下的作用。
        本节课针对的是我校20级电商2班的学生,学生从初中以来,数学是大部分学生的薄弱科目(特别有部分学生,对数学很不自信)。虽然基础较差,但一学期以来,学生对数学的学习热情较高,因此课堂氛围较为活跃。总体来说,该班学生学习接受能力较好,因此,我在知识方面,更注重基础知识的落实,基本技能的培养;在课堂教学中,注重数学情境的创设,引起学生对数学的兴趣,注重基础知识的讲解和引导,然后适当适时给出部分难题,让他们跳一跳够得着,从侧面激发他们对数学的热情。并在本节课中,采取5人小组合作式的座位分配。
        基于教材分析和学情分析,我设置本节课的教学重难点,为了突出重点、突破难点,我设置了如下的教学设计思路。从课前一练开始教学,通过典型例题的练习,引入本节课的任务——研究象限角三角函数值的符号问题。然后通过引导学生一起探究第一象限角的三角函数值后,让学生通过小组合作式分组探究其余象限角的三角函数值的正负号,然后通过规律总结巩固探究结果。最后呈现例1以及练习1,加深学生对知识点的灵活运用。随后,通过思维体操环节,让学生判断对错,拔高难度,引出例2,对知识点进行了升华。最后,通过课堂小结环节提炼本节课的重难点,让学生畅聊收获。
三、备课困惑
        在本节课中,我最大的困惑来自于教材例2及其解法的呈现。
例2  根据条件且,确定是第几象限的角.
分析 时,是第三象限的角、第四象限的角或的终边在y轴的负半轴上的界限角;时,是第二或第四象限的角. 同时满足两个条件,就是要找出它们的公共范围.
解  取角的公共范围得为第四象限的角.
        本节课的重点是会判断象限角三角函数值的正负号,那么例2的加入是对本节课的内容的深化,是一道十分典型的题目。然而在分析时,它还有一种情况是是终边在y轴的负半轴上的界限角,而界限角的三角函数值是下一个课时的内容,这就引起了一个矛盾。若是我讲解该界限角的正弦函数值为-1,这边牵扯到下一节的内容,而这节课若是讲两个课时的内容,这个班级的学生接受起来比较吃力。若是我不讲这种情况,数学的严谨性和逻辑性在这,必定不可模糊。备课时候的我,处在两难状态。
        此时,我的师父——胡晓苹老师点拨了我,“这并不冲突,从前一节课的任意角三角函数的定义学习之后,学生已经会计算这些角的三角函数值,而不是只有学习下一课时之后才会求解界限角的三角函数值......”,在听到这番话时,我瞬间明白,所谓的困惑点其实非常好处理,就是回归数学的本质。从任意角三角函数的定义出发,,也就是,那么在平面直角坐标系中,也就是x轴下方的三种情况。为了让学生自行突破该难点,我在新课的例2前设置了思维体操题,通过两道判断题,让学生提早突破难点,并在接下来的例2及其变式题进行巩固练习。


四、课堂实录片段
        PPT判断对错:2.若<0,则角α一定是第三象限角或第四象限角.
        学生陈:我觉得是对的。
        教师:那我们一起看一下答案,错的。那我们一起来找一下它的错误点在哪里?
        教师:小组之内可以相互讨论一下。一个小提示,从定义出发。


        ......学生讨论,教师融入每组一起讨论......
        教师:我已经听到同学的惊呼声,哇,看来已经想出来了。我来提示一下,它只有一个什么前提?
        学生:<0.
        教师:那我们来研究一下,是谁比谁。
        学生:y比r
        教师:既然<0,那就意味着?
        学生:y是负数。
        教师:那在平面直角坐标系中,(画图)这是x轴,这是y轴,就可以怎么表示?
        学生王:<0,r>0,所以y<0,取y轴负半轴。
        教师:就是取x轴下方,那除了第三、四象限,还有什么?
        学生王:y轴负半轴。
        教师:它(题目)有没有体现出现?
        学生:没有,错的。
        教师:非常好,请坐。那通过这道题,我们发现它一旦把条件和结论倒过来之后,新的条件就不够充分了。根据这样的思路,我们来看一下这道题。
        PPT:例2:根据<0且<0,确定α是第几象限角.
......(难点突破,学生流畅作答)......
六、教学反思
        在本次课堂生成后,我认为本节课各环节比  较流畅,学生掌握情况较好,大致完成了我的目标设置。个人比较满意的地方有两点:
        1.在课堂中与学生的互动较多,多以学生小组合作交流、上台板演、口答的方式呈现。其中小组合作的方式更好的让学生参与到课堂中,并亲身经历新知识的生成,对于落实知识点有很好的效果。课中,我发现小组成员内会互相帮助,相互答疑,充分发挥了学生在课堂的主体地位。而且在板演中,上台同学的书写十分漂亮,而台下同学也热衷于纠错,能够提高学生的学习积极性。
        2.思维体操环节设置的较为巧妙。由于例2难度的突然拔高,需要给学生垫一块石头,让其在自己的最近发展区跳一跳够得着。组织学生小组合作讨论过程中,发现学生自然而然考虑到题目的坎上,这时候稍作引导,他们自己便能得出结论,培养了学生的思维能力。
        回顾本节课,依然存在几个方面的不足需要进一步改善。
        1.课堂语言不够简洁。比如第一次组织学生小组合作时,指令还不够简洁;学生开始探究后,通过两次补充才表达完自己的意思;课堂后半段,学生代表发言时,我容易重复学生的回答,导致课堂中教师语言过多。
        2.例题的处理需要调整。例1的两小题设置有难度提升,我在课堂中先是板演第一小题,便直接让学生完成第二小题和练习。然而第二小题的难度比较大,学生独立完成有难度。因此,可以再次板演示范后,让学生独立完成练习题,可以节约部分时候。此外,例1的板书示范需要改进。建议:在原基础上例1里面出现一个比较大的角,这样学生学习完,做起练习会更流畅。
        例2的处理上涉及<0时,讲解不够到位,需改进。在本次汇报课中,最后由于时间较为紧张,在<0出来,同学马上将归类为第二象限和第四象限的角,而并未进一步考虑各个界限角的正切函数值的存在时。我并未停下来追问一句:“的终边若是落在x轴或者y轴呢,它的正切函数值可不可能小于0呢?”这是本节课我的一个遗憾
        3.课堂小结环节仍需要加强,最后应当总结两个内容,一是三角函数的符号规律,二是如何进行判断的方法。在平时需要多锻炼学生的归纳总结能力,增强他们的数学语言表达能力。
        4.从在备课期间的困惑点看出,本人对教材的理解还不够到位,对教参等内容的研读不够透彻,以及在备课中对职高数学教学还缺乏一丝的统筹能力。在接下来的教学生涯中,仍需进一步磨炼。
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: