土木工程建筑中大体积混凝土结构的施工技术探析 赵翔宇

发表时间:2021/5/7   来源:《基层建设》2021年第1期   作者:赵翔宇
[导读] 摘要:改革开放以来,我国经济迅速腾飞,城市化建设速度不断加快,越来越多高楼大厦拔地而起,为城市现代化建设作出了积极的贡献。
        中青建安建设集团有限公司  山东青岛  266000
        摘要:改革开放以来,我国经济迅速腾飞,城市化建设速度不断加快,越来越多高楼大厦拔地而起,为城市现代化建设作出了积极的贡献。大体积混凝土是高层建筑常见的一种施工结构形式,由于水泥水化热作用,极易产生混凝土裂缝问题。为此,必须做好温控工作,避免混凝土结构开裂,提高施工质量。
        关键词:土木工程建筑;大体积混凝土结构;施工技术
        1大体积混凝土施工技术的概念
        建筑物并非单一的混凝土结构组成,而是需要对不同的混凝土结构组合。大体积混凝土从字面意识来就是较大体积的混凝土,一般最小断面或者最小集合尺寸大于1米,对于大体积混凝土来说,要比其它的混凝土施工难度更大,尤其是需要采取有效的措施防止水气升温变化导致体积的收缩,否则该情况会导致裂缝出现。所以施工人员要严格按照施工工艺操作,对施工环节进行细致的检查。
        2大体积混凝土结构施工技术在土木建筑施工中的应用
        2.1抗裂施工技术
        混凝土配合比直接影响着大体积混凝土的施工质量,合理配置混凝土比例,可以加入适当的构造筋,其能够对混凝土抗裂性能起到增强作用,避免混凝土结构中应力集中。为了与相应部位配筋率一致,促进钢筋混凝土抗拉强度的提升,可以将暗梁设置在易发生裂缝的边缘位置。混凝土结构设计要充分考虑外界环境特点以及气候变化情况,对后浇缝进行合理化设计。在具体的施工环节,应尽可能选择水化热较低的水泥,不建议采用矿渣水泥、早强型水泥。其一方面能够防止因水泥水化热产生的裂缝;另一方面能够降低混凝土内部拉应力,对混凝土抗裂性能具有提升作用。需要注意的是,应尽可能在确保水泥活性的基础上减少水泥细度,减轻对水化热放热速度的影响。其次,在混凝土中可以适当加入粉煤灰,采用粉煤灰作为水泥替代物,能够减少水泥用量,减轻水化热引起得到混凝土裂缝问题。在骨料配比方面,应选择级配程度高的骨料,对骨料中含泥量进行严格控制,一般水灰比应低于0.6。工程实施过程中注重配筋,避免混凝土开裂。选择直径较小的配筋加入混凝土对于避免混凝土开裂有着突出的效果。需要注意的是要掌握配筋位置,通常加入建筑中间位置,其能够对混凝土薄弱部位起到强化作用,提高其承载能力。另外,需要在混凝土中加入缓凝剂,使得混凝土水化能够均和、完全。结合水泥种类、气候条件变化等确定外加剂的掺量。混凝土在低气温下其凝结时间也会延长,会导致混凝土表面水分蒸发,进而出现干燥收缩,因此,要对混凝土工作性能、收缩予以高度重视,通过收缩试验,结合其试验结果选择外加剂,以达到预防混凝土开裂的目的。
        2.2控制温度施工技术
        在大体积混凝土浇筑环节,应将浇筑入模温度控制在25℃以下,可以引进分层浇筑施工方法,针对较大厚度大体积混凝土,需要注意浇筑厚度不得超过50cm。在实施分层浇筑时,要注意每层间隔10d以上。通常,上一层混凝土浇筑施工结束后,在初凝及终凝阶段在水龙头作用下冲洗混凝土表面浮浆,将各种碎石暴露出来,其能够减少混凝土终凝后凿毛时间。在针对下一层混凝土浇筑工作时,可以将温度筋安装在接缝处,然后在混凝土层底面安装防裂筋。
        2.3抗拉强度施工技术
        混凝土材料搅拌环节,掌握大体积混凝土配比科学性,能够在一定程度上提升混凝土材料抗裂性能,对混合物进行配比前,首先需要针对混合料进行试验,确保混凝土材料配比适当,与工程规定的混凝土材料相符。搅拌材料时,需要注重对搅拌人员的技能培训与监督,保障混凝土质量。将配筋加入混合料配比,提高其抗裂性能。目前,土木建筑混凝土常见增强材料包括有机纤维、无机纤维等,其都能够不同程度地提高混凝土抗拉效果。


        3大体积混凝土施工注意事项
        3.1优化土木工程设计
        在编制土木工程施工方案时,需全面了解施工场区的地理环境和气候环境。根据气候条件变化规律,调整混凝土配制比例。在混凝土结构极易出现温度裂缝的部位配置钢筋,适当增大配筋密度,与温度差异形成的拉应力相抗衡,降低发生温度裂缝的概率。此外,通过设置后浇带与伸缩缝的方式对大体积混凝土予以划分。同时,结合大体积混凝土结构的实际情况,扩大水化热散热范围,缩小混凝土结构内外部温度差,减小因温度差形成的拉应力,分散因水化热反应形成的热量,降低发生温度裂缝的概率。再者,利用二次浇筑的方式对大体积混凝土展开设计和施工,配置钢筋网,增强混凝土结构的抗拉能力。
        3.2选用适宜的施工材料
        混凝土水化热反应会增大内外部温差,致使温度拉应力超过混凝土结构抗拉强度,出现大体积混凝土温度裂缝。为此,在实际施工过程中,应优选水化热反应系数低的混凝土材料,严格控制水泥使用量,添加适量的粉煤灰作为外加剂。在选择混凝土的粗骨料时,优选级配良好、强度高、粒径大的材料,且严格控制含泥量和有害物质含量,规避混凝土干缩裂缝问题。针对细骨料的选择,需严格按照泵送要求,选择细砂和中砂,减少水泥使用量。此外,增强同龄期混凝土结构的抗拉能力,加入适量的外加剂,改善混凝土和易性,从而降低水灰比,优化混凝土性能。
        3.3加大施工流程控制力度
        在混凝土浇筑过程中,试验人员要结合浇筑现场概况,密切关注混凝土和易性和塌落度变化情况。使用专业仪器设备,如实记录相关参数信息,并将参数信息上报至搅拌站,以便相关人员采取合理的处置措施。施工企业要加强对混凝土捣鼓人员的技能培训,提高混凝土捣鼓人员的专业技能水平。定期开展培训考核活动,在其专业技能水平满足标准要求的情况下正式上岗。针对进入工作岗位的员工,进一步明确工作范围和职责权限,促进各岗位的协调配合。对于一些需要专职人员捣鼓的部位,可指定实践经验丰富的施工技术人员进入现场加以指导。通常,混凝土捣鼓人员多采用插入法施工。插入振捣设备的插入深度多控制在30厘米左右,将插入振捣设备插入端与下层之间的间隔距离控制在60厘米左右。施工技术人员还要全面观察整个混凝土振捣流程,尽可能的避免漏振或过度振捣等问题的发生。
        3.4对冷却管实施降温处理
        在实际施工中,将冷却管道提前布置在混凝土结构的内部,依靠冷却管道的冷水回流作用,提升混凝土内部结构多余热量的流失率,达到降低温度的目的。与此同时,布置冷却管道还能保证混凝土浇筑结束后通水循环冷却的正常运转。在降温过程中,相关人员要严格控制冷却管中的流通水量,以及流通介质的温度。如果冷却管内的水温过高,在热传导作用和热压作用下,会增大管内的水流量,加快管内水流速。需要格外注意的是,冷却管的出水不能影响施工作业的正常运转。若混凝土结构已经初步硬化,则施工人员还可以利用冷却管出水的方式对成型的混凝土结构加以养护。待混凝土结构养护结束后,采用正空压浆法实施注浆和压浆,以免冷却管内部水温影响混凝土结构强度。
        结束语:综上所述,做好大型混凝土施工工程中的相关准备工作、监督工作,能够有效起到保障作用,并且有利于降低工程成本,使效益达到最大化。
        参考文献:
        [1]丁大钧.混凝土结构发展[M].北京:中国建筑工业出版社,1994.
        [2]朱新华.论大体积混凝土施工技术的应用[J].广东科技,2007(6):127-128.
        [3]胡健.大体积混凝土裂缝控制[J].山西建筑,2007,33(2):174-175.
        [4]刘秉京.混凝土技术[M].第2版.北京:人民交通出版社,2004.
        [5]崔素平,屈彦飞,尹志伟,等.土木建筑工程中大体积混凝土结构施工技术分析[J].建筑工程技术与设计,2018,(19):1851.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: