新疆八钢物业有限责任公司 830022
摘要:近年来,随着技术的进步,工业领域面临着新的发展契机,热能动力联产系统在工业领域的应用日益普遍。热能动力联产系统具有极高的独立性,多为热力循环方式,要维持系统的高效运转,降低系统运行时的能源消耗,各个工业企业都需要结合自身的发展现状,进行热能动力联产系统的节能优化与改进,降低系统运行时的能源消耗与环境污染,带动工业现代化的发展步伐。基于此,本文章对热能动力工程在锅炉和能源方面的发展进行探讨,以供相关从业人员参考。
关键词:热能动力工程;锅炉;能源;发展
引言
电力能源的工艺对于保障社会经济的发展有不可替代的作用。而在新的发展形势下,社会对于火力发电厂热能动力与生产经营也提出了新的要求。因此,火力发电厂如果想要保障自身的良好发展,就要从热能动力与生产经营方式进行创新与优化,以实现自身在发展过程中的经济效益最大化。
1火力发电厂中热能动力装置的基本概述
热能动力装置是火力发电厂的重要设备,一般由燃烧系统、汽水系统以及电气系统所构成。同其他装置相比,热能动力装置结构复杂,根据使用要求的不同,设备类型存在一定差异;另外,由于火力发电厂发电的特点不同,热能动力装置的构成也存在差别,但工作原理较为相似。火力发电是通过燃烧能源,将热量转换为电能,随后经过各种变压、变电方面的操作,将电能传输至千家万户。在火力发电厂中,锅炉设备是能量转换的关键,如果锅炉存在故障,将会影响整个热能动力装置的工作质量。因此,作为热能动力装置重要的组成部分,在火力发电厂生产过程中,需要对锅炉、发电机等设置严格的运行保障措施。做好设备的检修与维护工作,可延长发电机、锅炉等设备的使用年限,确保电力生产高效开展。
2电厂锅炉应用在热能动力工程中的现状
2.1节能环保和安全智能化的问题
在节能和安全智能化方面,热能的损失比较严重,主要与燃烧率不高、未完全燃烧严重以及燃料燃烧设备性能不够强有关。首先,电厂锅炉燃煤时会产生大量的烟气,在排出烟气过程中会带走部分热量,排烟散发的热量加速热损失甚至会影响锅炉的安全运行。所选择的燃煤的种类、燃烧时受热的面积以及锅炉内温度的控制和送风情况等,均会对排烟热量损失产生影响,如漏风和煤粉含水量较大会使排烟量及其热量增大。
2.2设备选择与热能损失
在生产电力资源的时候,很多因素都会影响到最后的生产效果,包括设备本身的工况以及运行性能。假设此时的热能利用率不足,无法保障运行效率,就会出现热能损失的问题。对此有必要合理设置生产过程和生产模式,选择正确的设备与生产方法。国内电厂系统广泛使用变频调节的手段。这些手段的使用获得了非常好的效果。这种技术因为不够稳定,所以会浪费大量资金,导致节能减排效果不达标、不合理。这种问题是未来节能降耗需要着重处理的问题,需要多加关注。
3热能动力工程在电厂锅炉中的发展应用
3.1回收利用废水余热
通过对废水余热的充分再利用,能够提高节能降耗效果与工作质量。除氧器在运行的时候,假设排放出蒸汽就会损耗很多的热能与质量。对此为了应对这种问题,需要合理使用冷却器对该问题进行处理,控制热能损耗、热能损失,获得良好效果,减少各种失误问题。此外有必要按照实际情况,针对性的制定定期、连续排污手段、排污模式。为了获得良好的排污效果,有必要扩容降压,二次利用污水。当然这种方法如果回收效率能力有限与不足,除了会浪费大量电能,同时也会耗费大量的废水余热,该问题甚至有可能会对周围生态环境造成不良的影响和干扰。所以需要工作人员认真研究这一技术,合理利用余热存放技术和使用技术,保障能源利用质量、利用效率,获得节能降耗效果。
3.2化学补充水的利用
工业生产系统中,汽轮机是其中的重要因素,在系统运行时,汽轮机机组运行中存在着严重的能量损耗问题,严重增加了工业企业的生产成本,且运行时存在着一定的污染。当前,很多工业企业逐步意识到了可持续发展的重要性,具有了更强的环保意识。为适应国家可持续发展、绿色发展的要求,必须结合其生产的具体要求,进行生产系统的优化与改进,促进生产方式的调整,推进产业结构的升级,适应工业现代化的发展趋势。在节能设计过程中,汽轮机运行时需对余热加以回收利用,减少不必要的能源消耗。其工作原理为:将化学补充水通过设备换热,有效改善汽轮机的运行环境。
3.3优化排烟系统,减少热损失
燃料的数量、送风量和引风量以及外界负荷等均会影响锅炉内燃烧的程度,须加强对锅炉送风量和引风量的控制,控制锅炉内的空气系数。应做好对二次风能的优化调节,以提高对高温烟气的吸收率,可提供氧气使煤炭充分燃烧。在排烟系统优化方面,为降低排烟带来的热能损失,必须做好对漏风问题的控制,准确观察排烟氧气表、风量表的变化,加强对水封槽的监测,排烟过程中不能将水放干。做好对空预器的内部清理,避免受热面污垢沉积影响后期燃烧效率,吹灰工作应定期开展并做好记录,以确保锅炉的稳定运行。锅炉运行中飞灰含碳质量浓度,会影响锅炉的燃烧效率,可采用飞灰含碳质量浓度检测的方式,对煤粉制造系统及通风量进行调整和控制,避免因飞灰问题而对锅炉燃烧工作效率产生影响。
3.4提高锅炉回收循环利用技术
从热能与动力工程中能量守恒角度看,减少损耗在热能回收利用方面有发展空间。主要是锅炉回收在废气和废水两个维度循环利用技术。以热电厂中锅炉为例,其运行过程中需要排放生产尾气。不做任何技术处理的前提下直接排空,正如前面分析的热能与动力工程损耗和环境影响问题,造成温室气体CO2大量排放,严重污染环境,并且随着废气排空导致热能的浪费流失。相反,如果可以对废气重复使用,上述问题严重程度将会得到很大改善。锅炉废气经过实验数据分析不会低于200℃,这样的温度虽然达不到熔炉锻造工艺的要求,但可以进行工件预热。喷焊时为了提高涂层结合强度和喷焊层质量得到保障需要减小热应力,而热应力减少有效途径之一便是对工件进行预热。低合金钢、铸铁等一般钢材预热温度是250-300℃,与锅炉废气温度相适应。此外,锅炉废水排放不仅导致水体热污染,还是能源损失的环节之一。锅炉排污水其中之一的特点是水量大,如果可以转化利用,这将是工艺上很大的技术突破。采暖系统二次管网需要补充大量介质水,经过絮凝沉淀,陶瓷膜过滤去除浑浊度等工艺流程使锅炉污水出水水质指标达到行业要求标准。通过新型工艺流程把废气、废水转化为工业生产资源优势,引导热能与动力工程行业趋向产业升级方向,在行业可持续发展中具有重要意义。
结束语
热能动力联产系统的节能优化设计是工业发展的必然趋势,可以充分实现资源与能源的利用。为了能够有效缓解我国的能源危机,更好地实现工业生产的可持续发展,需要加强热能动力联产系统的节能优化研究,坚持科学的设计原则和理念,增强热能的应用效果,在有效提高企业生产效率的同时,创造更大的经济效益和社会效益。
参考文献:
[1]李洪亮.热能与动力工程在锅炉应用中的问题分析[J].科技经济导刊,2019,27(36):89.
[2]于焱.热能动力工程在电厂锅炉中的应用研究[J].中外企业家,2019(36):95.
[3]赵锐芳.热能动力工程在电厂锅炉中的应用[J].河南科技,2019(31):62-63.
[4]高宽.热能动力工程在火电厂中的应用[J].门窗,2019(12):268.
[5]郭宏欣.热能动力工程在锅炉方面的应用[J].化工设计通讯,2019,45(05):217-218.