李蕾
福建省福州第八中学
摘要:
《普通高中数学课程标准(修订)》提出我国中学生在数学学习中,应培养好六大核心素养,数学建模就是其中的六大数学核心素养之一,近几年高考相当重视数学建模思想的考查,下面以高考数学题为载体进行探究.
关键词:思维 数学建模
“数学建模”是指通过对实际问题的抽象、简化,确定变量和参数,是一种创造性活动,也是一种解决现实问题的量化手段,根据创造性人才成长和发展的规律以及现代社会对人才素质的要求,寓创新能力培养于数学建模之中,是培养学生创新能力的一条有效途径。解答数学应用问题的核心是建立数学模型。这就要求:认真分析题意,准确理解题意,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想、转化、抽象,建立数学模型。
一、数学建模的实际意义
1.在一般工程技术领域,数学建模仍然大有用武之地.
在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段.
2.在高新技术领域,数学建模几乎是必不可少的工具.
无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.
3.数学迅速进入一些新领域,为数学建模开拓了许多新的处女地.
随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生.在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地.马克思说过,一门科学只有成功运用数学时,才算达到了完善的地步.展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期.
二、高考中常见的数学建模问题
(1)函数模型
挖掘数学应用问题的隐含条件,建立目标函数,把问题转化为函数模型求解.
如:(2016年四川卷)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ).(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)
A.2018年 B.2019年 C.2020年 D.2021年
点评:本题是指数函数模型在实际生活中的应用,考查了在实际问题中提取数量关系、建立数学模型,在不等式的求解过程中,考查了数据处理和运算求解能力.
(2)排列组合模型
排列组合应用问题蕴含着许多丰富的数学思想和方法.其因内容的抽象、思维的独特、解题方法的特殊性而成为高考数学科命题的一个热点和考点,若能认真理解题意,抽象出其中的数量关系,构建“排位置”“投球入盒”“抓球”“填格子”等几种数学模型来求解,则可简捷、巧妙地解决.
如:6个人排成一行,其中甲、乙两人不相邻的不同排法共有种.(用数字作答)
点评:试题以生活中的真实情境为素材,考查考生运用分类加法计数原理和分步乘法计数原理,解决实际问题的能力,在运算过程中应合理应用排列组合公式优化运算,引导考生关心身边的数学问题、发展数学应用意识.
(2)立体几何模型
新课程标准明确指出教师可借助几何模型,在直观认识和理解空间点、线、面的位置关系基础上,抽象出空间线、面的位置关系的定义,并了解可以作为推理依据的公理和定理.在高考中常考的模型有柱体、锥体和台体,因此,教师应灵活运用模型化,处理立体几何知识及生活中与几何图形有关的应用问题,帮助学生找到解题突破口,把问题化难为易.
如:《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )
A.14斛 B.22斛 C.36斛 D.66斛
点评:试题以《九章算术》中的问题为背景,传承了中国文化,考查了考生的应用意识和数学建模思想.根据米堆形状和所给条件,建立立体几何模型,计算出堆放米的体积,着重考查考生空间想象、逻辑推理、运算、应用和估算能力,体现了新一轮高中课程改革的要求.
(4)概率统计模型
在近几年的全国和各省市高考试题中,“概率与统计”应用问题是考查的重点内容,试题非常注重理论联系生活实际,常考的数学模型有古典概率、互斥事件、条件概率、分布列、二项分布、正态分布、直方图、茎叶图、线性回归模型等.
因此,作为高中数学教师应充分认识到加强建模教学的重要性。数学建模与纯数学有很大的区别,并不像以前学生遇到的数学问题那样去寻求唯一的解答。对于学生来说,需要很长的时间进行磨练,需要将思维方式朝向问题解决的方向转变。因此不仅在高三复习中对建模教学加强,而要在整个高中教学中都要加强训练,要做到由浅入深、由近及远,形成一个练习的教学过程。使学生在解决数学建模问题上有所准备,提高应考能力。在数学教学中,经常联系实际,建立生活中的数学模型,就能让学生感受到“生活处处皆数学”,有利于提高学习的兴趣和内在动力、从而激发学生的创新能力。