蒋尚旭
特变电工新疆新能源股份有限公司 新疆乌鲁木齐 830011
摘要:随着经济的发展,人们对电能需求越来越大。利用太阳能的光伏发电对于我国能源节约性和环境友好型社会的建立具有重要意义。但单纯的光伏并网发电系统存在着供电不稳定等问题,储能技术在光伏并网发电系统中的应用对这些问题具有良好的解决作用。
关键词:储能技术;光伏发电系统;应用
引言
在对光伏发电系统的储能单元进行设计的过程中,不仅要保证储能单元具有性能优越的特点,同时还需要针对储能单元的实际运行情况,建立具有较高有效性以及合理性的控制策略,使微网系统在运转的过程中其相关的要求能够得到快速响应,这也是现阶段针对相关问题的研究过程中需要重点关注的一个方面。
1光伏并网发电系统的组成
光伏并网发电系统是由光伏阵列、最大功率点跟踪装置、继电保护装置、储能系统、逆变器等多个组成。主要是为了让电网电压与交流正弦电流同相同频。而系统中的基础环节是光伏阵列,由它将太阳能转换为电能,由太阳能光伏电池单体,依照电流、电压的需要,串并联装在支架构成上。但光伏电池阵列的非线性特征较强烈,是由于其输出受到温度、光照、负载等因素影响,其中的最大功率点跟踪装置,能控制光伏电池阵列保持输出功率的最大,保证光伏能源能高效的利用。储能系统是调节控制光伏并电网系统中的电能,将光照时充足的电能储存起来,实际需要时再释放此部分电能,合理调节供电平衡状态与光伏电源的输出状态。而逆变器是连接电网与光伏发电系统的作用,并网逆变器与变压器都是把直流电转化为适用的交流电,是必要的组成部分。光伏并网发电系统还有一些典型特征,如光照强度与温度等环境因素会影响输出的功率,让发电功率出现不稳定与不可控制性;整个系统造价太高,需要研究好如何最大限度的吸收与利用太阳能技术,并控制成本;系统只提供有功功率,为了提高太阳能的利用率,在光伏系统并网时的并网电压与并网电流相同。
2光伏并网发电特征
一是光照强度、温度等各种环境因素会对光伏发电系统产生影响,由此就会导致其输出功率产生剧烈变化,天气多变状况下,发明功力也会呈现出非常明显的随机性和不可控性;二是光伏发电系统整体造价成本较高,因此,要充分利用最大功率点跟踪技术来实现对太阳能资源的最大程度利用,而且,电网必须还能够对光伏电能进行最大程度地吸收;三是为了实现对太阳能的高效利用,通常情况下光伏发电系统在并网的过程中会将电流以及电压设置为同相,即整个系统只能够提供有功功率。
3储能技术在光伏发电系统中的应用
3.1在电力调峰的应用
电力调峰,主要操作的目的就在于使峰电时段电网负荷较大的时候,居民以及工厂的用电需求能够最大限度地得到满足,但是,要能够在一定程度上对于用电进行调控,使电网负荷的压力能够得到有效降低。从电网内部储存装置自身的特点来讲,其本质上具有一定程度的灵活性,在电网功率负荷相对较低的阶段,能够将光伏发电系统在实际工作过程中产生的电能进行存储,存储的电能主要是在负荷高峰时段进行释放,这样的操作方式能够使电网在实际进行供电过程中的可靠性得到较大幅度的提升,使电网系统的常规运行能够真正保证稳定,有效避免因电网负荷功率较大而导致的电网运转故障问题出现,保证供电稳定的基础上,使区域的用电需求能够真正得以有效满足。我国各个地区在不同时间段用电总量存在波峰以及波谷一直是一个普遍存在的问题,且这一问题一直以来都受到了社会各界的关注。
尤其是在用电的波峰阶段,由于需要加大发电量来保证电能供给,导致电网的负荷进一步加大,此时一旦电网在运转的过程中出现故障,则会在一定程度上导致供电停止的问题,不仅会影响人民的生产以及生活,同时还会在一定程度上影响人民对于供电单位的信任,降低本单位自身的市场竞争力。由此可见,通过将储能技术应用到电力调峰的过程之中,不仅能够有效减轻供电峰值时期电网所需要承担的负荷,同时也能够使在峰谷时期电网能够正常运转,进而有效弥补波峰以及波谷不同时段因供电量调整而给电力系统带来的冲击,确保光伏发电系统能够维持稳定运转,降低光伏发电系统故障问题的发生概率。
3.2在电网电能质量控制的应用
在光伏并网发电系统的实际运转过程中,要想使电网电能的质量能够得到有效控制,储能技术的合理应用必不可少,通过在光伏并网发电系统中合理应用储能技术,使光伏电源在实际供电的过程中性能能够得到最大限度的稳定。在这一过程中,工作人员通常情况下会采取一系列的措施对光伏并网进行逆变控制,光伏并网发电系统在实际工作的过程中,其所产生的电能质量也能够得到有效控制,而在这一过程中,最主要发挥作用的就是我们所说的储能控制系统,通过充分发挥储能系统自身的作用,不仅能够对有源滤波进行调整,同时还能起到稳定电压的作用,使相角能够始终处在合理的范围之内,并在相角出现偏差的时候,及时进行调整,保证电网的发电质量。以往,电力企业在对电网的电能质量进行控制的过程中,多数情况下采用的都是人工的手段,而在这一过程中,很多细节方面的问题很难被及时发现,这也会在一定程度上导致供电质量受到影响。尤其是在用电波峰以及波谷的不同阶段,虽然能够通过人工的方式对供电量进行调节,但是,这样的调节很难保证完全准确。而通过将储能技术应用在电网电能质量控制之中,则能够有效解决上述问题,这样的操作方式能够有效避免电网在实际运转的过程中由于在短时间内供电量的大幅度调整而给电网系统自身造成的冲击。最大限度地保证供电的稳定性,同时也能在一定程度上降低因电网运行故障而导致的区域停电的情况出现,使人民的用电需求能够切实得到满足,实现整体供电质量的提升。
3.3在负荷响应时的应用
电网在实际运转的过程中,为了最大限度地保证运转的稳定性,减少故障问题的发生概率,往往会针对一些高功率的负荷进行自动控制并调整,在负荷的高峰阶段,不同部分的电网往往会交替运作,进而确保负荷高峰阶段电网的运转能够真正保证安全以及正常。而通过在电力用户中应用光伏储能系统,则能够最大限度地保证针对用户的供电稳定,但是在这一过程中,相关人员需要重点关注的一个问题就是光伏储能电站以及电网之间在与负荷响应控制系统进行连接的过程中,至少有一条通信线路能够正常工作,这样的操作方式能够最大限度地避免一些高功率设备给光伏发电系统正常运转带来的不利影响,真正实现负荷的高质量响应。
结语
总之,从我国现阶段的情况来看,储能技术虽然在一定程度上得到了发展,现阶段光伏发电系统中所使用的储能技术相较于以往已经有了较大幅度的进步,但是,研究人员还需要进一步开发新的储能装置,使我国光伏并网发电能够真正得到发展,使其应用范围能够真正得到扩大,让太阳能光伏并网发电技术能够真正使我国的更多人民受益,使发电能够真正做到绿色环保,进而有效减少以往火力发电给环境带来的不利影响。
参考文献:
[1]全俊晓.储能技术在光伏并网发电系统中的应用分析[J].电子测试,2020(02):129-130+118.
[2]林大为.储能技术在光伏并网发电系统中的应用[J].智能城市,2019,5(20):82-83.
[3]张帅.储能技术在光伏并网发电系统中的应用[J].通信电源技术,2019,36(05):227-228.
[4]高思俨.储能技术在光伏并网系统中的应用研究[J].通讯世界,2019,26(05):188-189.
[5]李逢兵.含锂电池和超级电容混合储能系统的控制与优化研究[D].重庆:重庆大学,2015.