金属材料损伤分析中的物理冶金分析技术 柳方鹏

发表时间:2021/5/17   来源:《基层建设》2021年第2期   作者:柳方鹏 祝冰冰
[导读] 摘要:在金属材料的损伤分析中,分析人员最广泛采用的分析技术即为物理冶金分析技术,该类分析技术可直接有效地给出材料的损伤行为、材料的组织结构特征参量和材料的工艺过程之间的紧密的关联性,同时,可用于对损伤机理进行解释,并对损伤的预防提供支撑。
        烟台台海玛努尔核电设备有限公司  山东烟台  264000
        摘要:在金属材料的损伤分析中,分析人员最广泛采用的分析技术即为物理冶金分析技术,该类分析技术可直接有效地给出材料的损伤行为、材料的组织结构特征参量和材料的工艺过程之间的紧密的关联性,同时,可用于对损伤机理进行解释,并对损伤的预防提供支撑。通过合理选取不同的物理冶金分析技术手段,损伤分析人员可得到材料中不同组成相的晶体结构、形貌(尺寸、形状和空间分布等)以及成分信息,还可得到材料的物理性能以及应力状态等。本文将损伤分析中常用的物理冶金分析技术分为五大类进行了综述,包括组织结构分析技术、物理性能分析技术、化学成分分析技术、残余应力分析技术以及原位分析技术。
        关键词:金属材料;损伤分析;物理冶金;分析技术;研究
        1物理性能分析技术
        1.11密度分析
        金属材料的密度取决于原子的质量、尺寸及其排列方式,当金属被合金化后,由于元素的固溶和第二相的析出等,其密度会发生不同程度的变化,一般采用浸入法和X射线法进行分析,浸入法是通过测量金属材料的质量和其体积而得到其密度的方法,而X射线法通过测量材料的晶格参数,结合晶格类型,计算出单胞的体积和单位体积内晶胞的个数,并结合原子质量计算出单位体积内晶胞的总质量,从而得出材料的密度。材料密度是工程设计选材时必须考虑的因素之一。
        1.2热性能分析
        通常是指对热膨胀性能(热膨胀系数、热导率等)进行分析,该系数与构件尺寸稳定性及不同构件之间的尺寸匹配性相关,在材料或构件的设计、生产制造和服役过程中,必须充分考虑其带来的影响。均可以利用专用仪器进行分析和测量。
        1.3扩散过程分析
        扩散过程分析是理解金属材料在高温下的行为特征的必要条件,特别在材料制备、热处理、表面改性、氧化和蠕变过程中。均匀金属材料的自扩散过程中,其扩散过程可采用放射性示踪法进行分析,对于异质材料,一般可采用化学分析方法,在金属材料中不同组成物质(组成相)的界面处元素的分布特征进行分析,结合菲克定律,可得出不同扩散过程的扩散系数。
        1.4相转变温度分析
        一般包括对金属材料液相线温度(熔点)、固相线温度(初熔点)以及各种组成相的形成(析出/回溶)温度的分析。基本的分析方法包括差热分析(DTA)和差示扫描量热法(DSC),都是通过测量材料在加热或冷却过程中能量变化与温度的关系曲线图,在材料内部发生相转变时出现剧烈的能量变化(放热或吸热)而形成能量变化峰值,但是,这些方法受对能量变化探测灵敏度的限制,只有当能量变化足够大时,在曲线图上才会表现出明显的能量变化峰,因此,有时候并不能准确捕捉到相转变温度,尤其对某些含量较低的析出相,往往会埋没在曲线中。
        为弥补这方面不足,可以采用等温相变淬火金相法,准确测量各类相转变温度,即使是含量非常低的析出相也可被识别出来,这种方法通过将材料在保护气氛中、恒定同温度下保温足够长的时间后淬火,磨制金相样品后观察和识别其金相组织,根据组织变化,可准确锁定某种相刚开始出现时的温度作为该相的转变温度,但与前面所述的两种方法相比,这种方法需要大量的等温淬火实验和金相试样制备与分析,比较耗时耗力。一种镍基高温合金的相转变温度的分析,利用等温相变淬火金相法获得的不同等温温度时的金相组织,可准确得出各种组成相的转变温度。应用这类分析技术,可将金属材料或构件在高温服役时发生的相转变特征和实际服役温度关联起来,为材料或构件的超温损伤或失效的分析、评判和预防提供可靠的依据。


        2化学成分分析技术
        2.1常规化学分析技术
        化学分析技术方法主要用于分析失效零件名义或宏观区域的材料成分,其主要方法有:(1)湿法化学分析可准确分析含量较大的金属、阴离子的有无及其浓度;(2)半定量发射光谱和原子吸收光谱用于分析合金成分;(3)燃烧法用于测定金属中的碳、硫、氢、氮、氧的含量;(4)点滴法可简单地定性分析金属中的合金元素、沉淀物、腐蚀产物、土壤等;(5)各类光谱仪或X射线谱仪,如红外、紫外光谱仪、光发射谱仪、原子吸收谱仪和分子荧光谱仪等,用于分析不同种类、不同含量元素的化学成分,可根据分析对象的具体特点和分析要求,选择合适的分析手段。
        2.2表面或微区化学分析技术
        在失效分析中,相对于名义或宏观区域的成分分析而言,失效零件的材料表面/界面成分、状态及失效源区的微区成分和状态分析更为重要,尤其是对表面损伤或者由于诸如夹杂、成分偏析等造成的失效。目前主要的分析仪器有电子探针显微分析仪(EPMA)、X射线能谱仪(EDS)、X射线波谱仪(WDS)、俄歇电子谱仪(AES)、电子能量损失谱仪(EELS)、X射线光电子谱仪(XPS)、场离子显微镜(FIM)、原子探针显微分析仪(AP)、低能离子散射谱仪(LEISS)以及二次离子质谱仪(SIMS)等。其中,配备X射线能谱仪、X射线波谱仪或电子能量损失谱仪(EELS)等,须配备在电子探针、扫描电镜或透射电镜上,以满足微区元素成分、状态分析的需要,下面就最常用的分析技术进行讨论,其他技术在必要时可参考相关文献。
        电子探针显微分析仪:它靠光学成像进行定位,广泛应用于平坦表面微区1μm区域的成分定性或定量分析。利用电子探针可给出所分析元素的线分布、面分布和定点区域的元素含量,元素分析的检出限可低至0.1%(w)左右。电子探针对表面无损伤作用,但缺点是对所分析的表面平整度有一定要求,无法分析粗糙的断面。常配备X射线波谱仪(WDS)和X射线能谱仪(EDS)进行元素分析,首先,X射线波谱仪:X射线的波长决定于被激发物质的原子序数,该仪器是利用探测X射线的特征波长来进行的成分分析。波长色谱仪可分析到铍。一般来说,波谱仪的元素特征波长分辨率较高,这是它的突出优点。但是为了达到谱仪的精确聚焦,要求样品上X射线的发射源(分析点)的几何位置严格的处于聚焦圆上;同时波谱仪难以在低速流和低激发强度的情况下使用,这是波谱仪的两个缺陷。其次,X射线能谱仪:X射线能谱仪的最大优点是不损伤表面以及可同时适用于粗糙的断口表面和磨片表面的元素分析,因而是目前失效分析中最常用的微区成分分析仪器。X射线能谱仪是测量特征X射线能量来确定样品中元素的方法。这两种谱仪也可配置在扫描电镜或透射电镜上,将微观组织结构分析与化学元素分析有效集成起来。
        3结语
        综述了金属材料损伤分析中常用的物理冶金分析技术,不同的技术各有其特点和不足,能够给分析人员提供不同种类和不同层面的信息,在分析工作中起到不同的作用和解释不同方面的问题,因此,在实际的分析工作中,应根据分析的具体要求、技术手段的实用性和可用性以及分析人员的合理综合判断,有针对性地选取实用的分析技术,并将它们有效地结合起来,筛选合适的分析技术手段和装备,为分析工作获取有价值的综合信息。
        参考文献:
        [1]曲士昱,赵文侠,周静怡,等.物理冶金技术在失效分析中的应用与展望[J].失效分析与预防,2015,10(5):320-323.
        [2]舒畅,张帷,苏艳,等.海洋大气环境对钛合金TAl5断裂韧度的影响[J].表面技术,2012,41(6):54-57
        [3]范映伟,侯淑娥,黄朝晖.Al含量对Ni3Al基IC10合金凝固行为的影响[J].材料热处理学报,2009,30(1):88-92.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: