浅谈高中数学最优化问题及其应用

发表时间:2021/5/20   来源:《教学与研究》2021年第55卷5期   作者:吴国杰
[导读] 最优化问题反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,
        吴国杰
        宁夏育才中学孔德学区   
        摘要:最优化问题反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,在高中数学中涉及统筹、线性规划、排序、不等式、函数等内容,不仅具有趣味性,而且实用性也非常强,由于解题方法灵活,技巧性强,对于学生开拓解题思路,增强数学能力很有益处,本文尝试对高中数学中的最优化问题作以初步的整理和探讨。
        正文:
        一 最优化问题及其分类
        (1)最优化思想及最优化问题实例
        引例1:5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?这也是一个统筹安排达到最优化的例子
        引例2:写出解方程x2-2x-3=0的一个算法。
        解:算法1:第一步:移项,得x2-2x=3  ①第二步:①式两边同加1并配方,得(x-1)2=4;②第三步:②式两边开方,得x-1=±2; ③ 第四步:解③得x=3或x=-1。
        算法2:
第一步:计算方程的判别式判断其符号△=22+4×3=16>0;
第二步:将a=1,b=-2,c=-3代入求根公式x=,
得x1=3,x2=-1
评析:比较两种算法,算法2更简单,步骤少,所以利用公式解决问题是最理想、合算的算法,达到了优化算法的目的。
        像以上例子中所述的问题都属于最优化问题:即要在尽可能节省人力、物力和时间前提下,利用数学中的线性规划及函数,算法等争取获得在可能范围内的最佳效果。
(2)高中数学中常见的最优化问题:
线性规划、算法的最优化,利用图解法求解函数的最佳、简便运算
        二 最优化问题应用举例
例1: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?
[分析与解] 一个10尺长的竹竿应有三种截法:
(1) 3尺两根和4尺一根,最省;
(2) 3尺三根,余一尺;
(3) 4尺两根,余2尺。
    为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。
例2: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
        [分析与解] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。
例3: 把25拆成若干个正整数的和,使它们的积最大。


        [分析与解] 先从较小数形开始实验,发现其规律:
把6拆成3+3,其积为3×3=9最大;
把7拆成3+2+2,其积为3×2×2=12最大;
把8拆成3+3+2,其积为3×3×2=18最大;
把9拆成3+3+3,其积为3×3×3=27最大;……
        这就是说,要想分拆后的数的乘积最大,应尽可能多地出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。
例4: A.B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
        [分析与解] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。
        如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。
例5 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?
        [分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。
[解] 乙有必胜的策略。
由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。
[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;
        (2)我们可以这样来分析这个问题的解法,将所有的情形剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。
例6 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?
    [分析与解] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50个男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。
         三 对最优化问题的认识
        随着信息技术的发展及计算机的普及,利用数学知识合理的处理实际生活中的问题已越来越重要了这就要求在学习的过程中积极的思考,充分掌握数学的基本思想,转化,化归,数形结合等。
        参考文献:
        1.《最优化理论与方法》袁亚湘、孙文瑜
        2.《最优化问题初级》黄思立
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: