超声在诊断踝关节外侧副韧带损伤的应用进展

发表时间:2021/6/16   来源:《医师在线》2021年11期   作者:易元乔 通讯作者:冉海涛
[导读] 踝关节韧带损害在踝关节急慢性损伤中非常常见。
        易元乔  通讯作者:冉海涛

        重庆医科大学附属第二医院超声科,超声分子影像重庆市重点实验室  重庆市  400010


        摘要:踝关节韧带损害在踝关节急慢性损伤中非常常见。超声检查技术由于其较强的实时性及动态性,对踝关节外侧副韧带损伤具有较高的诊断价值。本文回顾既往超声在踝关节外侧副韧带损伤的临床研究,总结超声检查技术在外侧副韧带损伤的应用价值。
        关键词:踝关节,外侧副韧带,超声
        Abstract:Ankle ligament damage in acute or chronic ankle injury is very common. Due to its strong real-time and dynamic characteristics, ultrasound has a high diagnostic value for the injury of the lateral collateral ligament(LLC).This paper reviews the clinical studies of ultrasound in the injury of LLC and summarizes the application value of ultrasound in the injury of the lateral collateral ligament.
        Keyword:Ankel,Lateral collateral ligament,ultrasound

        踝关节扭伤在踝关节运动损伤中非常常见,可发生在各个年龄段中,主要累及韧带和骨骼。踝关节外侧副韧带(lateral collateral ligament,LLC)是踝关节运动损伤中最常累及的损伤部位,占所有韧带损伤的90%[1]。急性踝关节损伤中约有30%会发展为慢性疼痛、关节不稳定,甚至骨关节病,对患者的生活质量造成严重影响[2]。近年来,超声因具有较高的实时性及动态性,在踝关节急慢性损伤的诊断中的应用越来越广泛。

1踝关节韧带解剖结构
        踝关节外侧副韧带包括距腓前韧带(anterior talofibular ligament,ATFL)、跟腓韧带(calcaneofibular ligament,CFL)、距腓后韧带(posterior talofibular ligament,PTFL)三个部分。ATFL一般分为两束,起自腓骨下段前缘,向前内侧走形,止于距骨颈外侧面[3]。CFL是外侧副韧带中最长的部分,长度约2cm,起自腓骨下段后方,向后方走形于腓骨长短肌腱深层,止于跟骨外侧壁。PTFL是踝关节外侧副韧带中最深部分,起自外踝的后缘,向后内方走形,止于距骨后突起外侧结节[4,5]。

2踝关节韧带生物力学及损伤类型
        外侧副韧带是踝关节扭伤时最易受损的部分。ATFL在踝关节外侧副韧带中最为薄弱,在足内翻跖屈位着地时受到张力最大,最易受损。在更加严重的扭伤中,CFL可在ATFL受损之后发生撕裂,而PTFL损伤的情况较少[6]。
        踝关节损伤按照程度可分为3度:Ⅰ度为韧带的挫伤;Ⅱ度为韧带部分断裂;Ⅲ度为韧带完全断裂。Ⅱ度损伤又可分为Ⅱ度轻度损伤(韧带撕裂少于<50%)和Ⅱ度重度损伤(韧带撕裂>50%)[7]。Ⅰ度及Ⅱ度轻度损伤属于稳定性损伤,常进行保守治疗。而Ⅱ度重度及Ⅲ度损伤属于不稳定性损伤,需要考虑手术治疗[8]。

3超声检查在踝关节外侧副韧带损伤的应用
        超声技术应用于运动损伤中已有20余年,随着超声技术设备的不断进步,在临床中的应用越来越广泛。扫查时,超声探头应放置于韧带的最大横截面中,扫查中适当活动关节增加应力,有助于更完整的暴露韧带,区分部分断裂及完全断裂[8]。
        急性轻度扭伤时,韧带表现为正常或稍增厚,回声稍减低[10]。急性部分性韧带撕裂通常表现为增厚、低回声,部分韧带连续性中断,而动态检查时韧带仍紧绷。急性完全性韧带撕裂通常表现为韧带不连续,无回声或低回声,动态扫查中不会因应力而收紧[11]。慢性损伤表现为韧带增厚或变薄,并可能发生骨化[8,11]。
        超声在诊断踝关节外侧副韧带损伤中具有较高的灵敏性和特异性。Baltes等[12]对92例急性踝关节损伤患者的外侧副韧带进行检查,发现超声诊断ATFL完全断裂的敏感性为87%,特异性为69%;CFL完全断裂的敏感性为29%,特异性为92%。Alves[4]等通过对比踝关节韧带损伤在超声及核磁共振成像(magnetic resonance image,MRI)的表现,发现超声对ATFL损伤的准确率为91%。Alvarez等[13]对比21例慢性CFL损伤患者超声及MRI检查结果,发现超声诊断的敏感性和特异性分别为90%和100%。Lee等[14]通过对比受损ATFL的超声及关节镜表现,发现超声在急性和慢性撕裂中的敏感性为95%。
        超声在指导治疗方面的应用也逐年上升。Kemmochi等[15]回顾分析了140例非手术治疗的急性踝关节外侧副韧带损伤患者,应用超声分类选择不同治疗方式,结果133例(95%)取得了良好的治疗效果,治疗方式与结果按损伤类型分布均有显著性差异(p<0.001)。Hattori等[16]回顾性分析了26例ATFL修复手术的患者,与传统开放手术相比,超声引导下外侧副韧带修复手术锚钉放置的位置与腓骨隐匿性结节的距离更小,两者的平均差异为0.37mm(95%置信区间为-2.1-2.9mm),置信区间的下限在非劣势范围内(-5-5mm)。
        实时剪切波弹性成像技术(shear wave elastography,SWE)可实时检测组织硬度,目前也被应用于外侧副韧带损伤的诊断中。李硕等[17]运用实时剪切波弹性成像技术(shear wave elastography,SWE)评价损伤的踝关节韧带,发现受损韧带的杨氏模量值及剪切波速度(SWV)均较正常韧带降低(p均<0.001)。

4讨论
        踝关节韧带损伤是最常见的运动损伤之一,急性损伤若未得到及时处理,可发展为慢性踝关节不稳,严重影响患者的踝关节功能[18]。因此及时的诊断至关重要。关节镜被证实是评估踝关节韧带损伤的有效方法,但它价格昂贵,且为侵入性检查,术后并发症的发生率高达12.06%[19]。MRI因其能完整显示受损韧带的位置、损伤类型、程度及周围组织的情况,且具有较高的灵敏度及特异度,被广泛应用于临床工作中,但MRI价格较高、耗费时间长,无法对有金属植入物的关节进行检查[20]。超声在外侧副韧带的诊断中具有较高的灵敏性和特异性,费用低廉、可动态检查,受植入物的影响相对较小,且超声可引导介入治疗中。而超声新技术的应用有望进一步提升诊断韧带损伤的灵敏度和准确度。因此,超声技术在外侧副韧带的诊断及治疗中有着较好的前景。但超声对于深处组织的骨挫伤、隐匿性骨折或软骨损伤有一定的局限性,可能需要与其他影像学方法互为补充。


参考文献
 [1]    Lee SH, SJ Yun. The feasibility of point-of-care ankle ultrasound examination in patients with recurrent ankle sprain and chronic ankle instability: Comparison with magnetic resonance imaging.[J]. Injury, 2017, 48(10): 2323-2328.
 [2]    Guillo S, P Archbold, A Perera, et al. Arthroscopic anatomic reconstruction of the lateral ligaments of the ankle with gracilis autograft.[J]. Arthroscopy techniques, 2014, 3(5): e593-e598.
 [3]    K Matsui, Takao M, Tochigi Y, et al. Anatomy of anterior talofibular ligament and calcaneofibular ligament for minimally invasive surgery: a systematic review[J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(6): 1892-1902.
 [4]    Timothy Alves, Dong Qian, Jacobson Jon, et al. Normal and Injured Ankle Ligaments on Ultrasonography With Magnetic Resonance Imaging Correlation[J]. Journal of Ultrasound in Medicine, 2019, 38(2): 513-528.
 [5]    C-Y Hung, Chang K-V, Mezian K, et al. Advanced Ankle and Foot Sonoanatomy: Imaging Beyond the Basics[J]. Diagnostics (Basel), 2020, 10(3).
 [6]    Hintermann B. Biomechanics of the unstable ankle joint and clinical implications.[J]. Medicine and science in sports and exercise, 1999, 31S459-S469.
 [7]    David S, K Gray, JA Russell, et al. Validation of the Ottawa Ankle Rules for Acute Foot and Ankle Injuries.[J]. Journal of sport rehabilitation, 2016, 25(1): 48-51.
 [8]    A Barile, Bruno F, Arrigoni F, et al. Emergency and Trauma of the Ankle[J]. Semin Musculoskelet Radiol, 2017, 21(3): 282-289.
 [9]    L-M Sconfienza, Orlandi D, Lacelli F, et al. Dynamic high-resolution US of ankle and midfoot ligaments: normal anatomic structure and imaging technique[J]. Radiographics, 2015, 35(1): 164-178.
[10]    J-H Song, Kang C, Kim N-S, et al. Evaluation of the uninjured anterior talofibular ligament by ultrasound for assessing generalized joint hypermobility[J]. Foot Ankle Surg, 2020.
[11]    Park JW, SJ Lee, HJ Choo, et al. Ultrasonography of the ankle joint.[J]. Ultrasonography (Seoul, Korea), 2017, 36(4): 321-335.
[12]    TPA Baltes, Arnaiz J, Geertsema L, et al. Diagnostic value of ultrasonography in acute lateral and syndesmotic ligamentous  ankle injuries[J]. Eur Radiol, 2021, 31(4): 2610-2620.
[13]    CAD Alvarez, Hattori S, Kato Y, et al. Dynamic high-resolution ultrasound in the diagnosis of calcaneofibular ligament injury in chronic lateral ankle injury: a comparison with three-dimensional magnetic resonance imaging[J]. J Med Ultrason (2001), 2020, 47(2): 313-317.
[14]    Sun-Hwa Lee, Yun Seong-Jong. Ankle ultrasound for detecting anterior talofibular ligament tear using operative finding as reference standard: a systematic review and meta-analysis[J]. European Journal of Trauma and Emergency Surgery, 2020, 46(1): 73-81.
[15]    Kemmochi M, S Sasaki, K Fujisaki, et al. A new classification of anterior talofibular ligament injuries based on ultrasonography findings.[J]. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association, 2016, 21(6): 770-778.
[16]    Hattori S, K Onishi, Y Yano, et al. Sonographically Guided Anchor Placement in Anterior Talofibular Ligament Repair Is Anatomic and Accurate.[J]. Orthopaedic journal of sports medicine, 2020, 8(12): 1812014746.
[17]    李硕,郭瑞君. 实时剪切波弹性成像技术评估踝关节外侧副韧带急性闭合型损伤的临床应用[J]. 中华医学超声杂志(电子版), 2019, 16(11): 815-820.
[18]    M-K Jesse, Hunt K-J, Strickland C. Postoperative Imaging of the Ankle[J]. AJR Am J Roentgenol, 2018, 211(3): 496-505.
[19]    Donnenwerth MP, TS Roukis. The incidence of complications after posterior hindfoot endoscopy.[J]. Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association, 2013, 29(12): 2049-2054.
[20]    P Salat, Le V, Veljkovic A, et al. Imaging in Foot and Ankle Instability[J]. Foot Ankle Clin, 2018, 23(4): 499-522.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: