锂离子电池安全问题概述

发表时间:2021/6/25   来源:《中国电业》2021年7期   作者:隋佳琦
[导读] 近年来锂离子电池相关的安全性事故频发,使得锂离子电池的安全性成为研究热点
        隋佳琦
        中电科能源有限公司 天津市 300384
        近年来锂离子电池相关的安全性事故频发,使得锂离子电池的安全性成为研究热点,也是新能源行业最为重视的课题。锂离子电池的安全性问题,其内在原因是电池内部发生了热失控,热量不断的累积,造成电池内部温度持续上升,其外在的表现是燃烧、爆炸等剧烈的能量释放现象。
        1.热失控原因分析
        电池是能量的高密度载体,本质上就存在不安全因素,能量密度越高的物体,其能量剧烈释放时的影响就越大,安全问题也越突出。不同的电化学体系、不同的容量、工艺参数、使用环境、使用程度等,都对锂离子电池的安全性有较大的影响。锂离子电池热失控事故的触发原因有很多种,根据触发的特征,可以分为机械滥用触发、电滥用触发和热滥用触发三种方式。

        
        锂离子电池热失控过程中释放出大量的能量,伴随有冒烟、起火甚至爆炸等现象。单体电池热失控发生后,又会进一步蔓延至相邻单体,造成整个电池组的热失控。
        2. 解决热失控的策略
        2.1 外部管理
        1)PTC(正温度系数)元件:在锂离子电池中安装PTC 元件,其综合考虑了电池内部的压力和温度,当电池因过充而升温时,电池内阻迅速提高从而限制电流,使正负极之间的电压降为安全电压,实现对电池的自动保护功能。
        2)防爆阀:当电池由于异常导致内压过大时,防爆阀变形,将置于电池内部用于连接的引线切断,停止充电。
        3)电子线路:2~4 节的电池组可以预埋电子线路设计锂离子保护器,避免过充及过放电,从而避免安全事故发生,延长电池寿命。
        当然这些外部控制方法都有一定效果,但这些附加装置增加了电池的复杂性和生产成本,也不能彻底解决电池安全性问题。因此,有必要建立一种内在的安全保护机制。
        2.2 改进电解液体系
        电解液作为锂离子电池的血液,电解液的性质直接决定了电池的性能,对电池的容量、工作温度范围、循环性能及安全性能都有重要的作用。。因此,许多研究者尝试改进电解液体系以提高电解液的安全性能。在电池的主体材料(包括电极材料、隔膜材料和电解质材料)在短时间内不发生颠覆性改变的情况下,提高电解液的稳定性是增强锂离子电池安全性的一条重要途径。
        2.2.1 功能添加剂 功能添加剂具有用量少、针对性强的特点。即在不增加或基本不增加电池成本、不改变生产工艺的情况下能显著改善电池的某些宏观性能。因此,功能添加剂成为当今锂离子电池领域一个研究热点,是解决目前锂离子电池电解液易燃问题最有希望的途径之一。添加剂的基本作用就是阻止电池温度过高和将电池电压限定在可控范围内。因此,添加剂的设计也是从温度和充电电位发挥作用的角度进行考虑的。
        过充添加剂 在锂离子电池过度充电时,会发生一系列的反应。电解液组分(主要是溶剂)在正极表面发生不可逆的氧化分解反应,产生气体并释放大量热量,从而导致电池内压增加和温度升高,给电池的安全性带来严重影响。
        2.2.2 离子液体 离子液体电解质完全是由阴阳离子组成。由于阴离子或者阳离子体积较大阴阳离子之间的相互作用力较弱,电子分布不均匀,阴阳离子在室温下能够自由移动,呈液体状态。大体上可以分为咪唑类、吡唑与吡啶类、季铵盐类等。
        目前唯一有待解决的问题就是离子在电解液体系中的传导能力。
        2.2.3 选择热稳定性好的锂盐 六氟磷酸锂(LiPF6)是目前商品锂离子电池中广泛使用的电解质锂盐。虽然它单一的性质并不是最优的,但是其综合性能是最有优势的。
        2.2.4 聚合物电解质 许多商品锂离子电池使用易燃易挥发的碳酸酯溶剂,若出现漏液很可能引起火灾。大容量、高能量密度的动力型锂离子电池尤为如此。而使用不可燃的聚合物电解质代替易燃的有机液态电解质,能够明显提高锂离子电池的安全性。
        2.3 正极材料
        可以确定正极材料在充电状态电压高4V时不稳定,易于在高温下发生热分解放出氧气,氧气与有机溶剂继续反应产生大量的热及其他气体,降低电池的安全性。因此,正极与电解液反应被认为是热失控主要原因。对于正极材料,提高其安全性的常见方法为包覆修饰。
        2.4 碳材料
        目前对安全性要求更高的动力电池中通常使用具有较低的比表面积,较高的充放电平台,充电态活性较小,热稳定性相对较好安全性高的球形碳材料,如中间相碳微球(MCMB),或者尖晶石结构的Li9Ti5O12,其较层状石墨的结构稳定性更好。目前提高碳材料性能的方法主要包括表面处理(表面氧化、表面卤化、碳包覆、包覆金属及金属氧化物、聚合物包覆)或者引入金属或者非金属进行掺杂。
        2.5 隔膜
        目前在商业锂离子电池中应用最广泛的隔膜依然是聚烯烃材料,其主要缺点就是高温下热缩以及电解液浸润性差。
        3.总结及展望
        电动汽车和能源存储用的锂离子电池,其容量远大于小型电子设备,且使用环境更为复杂。综上所述,我们可以看出其安全性能远远还没解决,已经成为目前应用的技术瓶颈。后续工作需要深入到电池在非正常运行后可能导致的热效应,探求提高锂离子电池安全性能的有效途径。今后应着力研究开发针对特定电极材料的不同电池体系。同时开发构建具有高安全性的聚合物锂离子电池体系或者开发具有单一阳离子导电和快离子输运以及高度热稳定性的无机固体电解质。此外,提高离子液体性能、开发简单廉价的合成工艺也是今后研究的重要内容。

        
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: