王伟
中国能源建设集团新疆电力设计院有限公司 新疆乌鲁木齐 830000
摘要:在市场需求和竞争的推动下,中国大型风电机组开发技术升级和国际化进程不断加快。当前我国1.5~4MW风电机组已形成充足的供应能力,部分机组制造商的5~6MW风电机组样机也已下线。相比于1.5MW~2.5MW风电机组研发-量产的时间周期,4兆瓦及以上机组研发-量产的时间周期更短。上述原因使得在风电并网装机容量年年突破的背景下量,风力发电机组设备质量难以得到有效的保障,最终导致风力发电机组可能会因为各种故障检修,降低可利用率、增加检修运维成本的状况。本文主要对风力发电机组安全保护展开研究,期望能够为后续风电行业良性发展起到参考作用。
关键词:风力发电机组;安全保护;技术
引言
风能是当今典型的可再生能源之一,是目前主要的石化能源代替品。近几年,随着我国风能利用能力的提升和相关风能设备的成熟,国内各地风力发电厂不断涌现,风电机组的规模也在不断扩大。目前,我国1.5~4MW风电机组已形成充足的供应能力,部分机组制造商的5~6MW风电机组样机也已下线。国外主要的整机制造商已经完成4~7MW级风电机组的产业化,8~10MW级的风电机组样机已挂机,欧美整机设计公司均进入到10MW级整机设计阶段。维斯塔斯风力技术公司(Vestas)和德国Senvion公司都发布了将开发200m左右叶轮直径的10MW风电机组的计划,2018年美国通用电气公司宣布将在3年内完成12MW海上风电机组的开发。面对日益增加的风力发电机组规模和数量,各种故障的发生可能性也随之增加,使得风电场发电机组的维修费用也在不断上升。因此,基于风力发电机不同监测数据,全面分析风力发电机组运行时遇到的故障,深入研究风力发电机组监测与故障技术具有非常重要的意义。
1概述
1.1风力发电机组概念
其主要指借助风机转换风能与电能,利用电磁感应原理经过调压操作将转换后的电能输送到电网与用户中心。经过多年发展,我国风力发电机组建设日益完善,逐步改进传统的恒速恒频发电机组,应用新技术与设备对风力发电进行创新完善。变速恒频技术是一种新技术,其能够动态化调整风机叶轮转速,结合风速变化调整并引入变流技术,以此确保风力发电保持恒定的输出频率。应用变速恒频技术可以保障风力发电质量,所以现阶段此项技术广泛应用于我国风力发电并网系统。
1.2发电机组故障特点
对于一个风力发电厂的风力发电机组而言,任何一种机组根据风电场装机容量不同风力发电机组台数也不同,即使再好的品控,在长达20年的生命运行周期中因各种运行工况的出现,都会出现或多或少或大或小的故障。通常来说,风力发电机组大多数内部故障不会对从属设备构成威胁,且这种故障问题的存在对整个发电机组的安全威胁并不大,因此只有在负荷率非常低的情况下方可进行检修,甚至不少机组生产商更是明文规定只有在设备停止运行的条件下方可对这类故障进行检修。因此,风力发电机组的故障大多属于内部构件故障运行状态恶化造成的,尤其是传动系统的故障更容易恶化和扩大。这种故障如果不能经过巡检被发现,那么则只能依靠优质化验结果或者振动谱来进行分析。
2机组各类安全状态监测技术
2.1监测技术特点
风力发电机组状态监测中,基于发电机组各项运行参数,监测机组运行参数变化基础上判断机组运行是否正常。风力发电机组包含很多种运行参数,主要包含可测量与计算两种参数。其中,计算参数主要指对可测量参数进行读取,并采用相关算法计算,计算结果视为运行参数。结合机组实际运行情况,合理选用测量装置或算法,这是风力发电机组状态监测的基础。假若测量装置不相符,则无法对电力参数能力状态及数值大小变化进行准确测量;如果算法使用不规范或编写不正确,计算参数就会出现错误,由此对机组正常运行带来严重的影响。不同种类及厂家其测量装置与各类算法有其相应的优缺点,因而要根据机组实际情况合理选用。
2.2监测异常可测量参数
风力发电机组运行中,必须要采取有效的方法与原则监测可测量参数。通常需要注意以下问题:(1)风力发电机组运行中,可测量参数主要涉及电压、电流、频率、温度及振动幅度等,要结合可测量参数类型合理选用测量设备,协调各测量设备。(2)分析并明确可测量参数上下限范围,以此选择合理量程。(3)对可测量参数正常或异常值区间范围与动作触发条件进行分析。
2.3异常状态监控及故障预警的研究
风力发电机组运行中,参数计算离不开有效监测技术与方法的支持,实际操作中要注意以下问题:(1)参数检测计算时,要合理选用算法。风力发电机组类型比较多,各类型机组内需要不同的算法,且每一种算法有很多可供选择的策略。因而要结合风力发电机组实际情况与需求合理选择算法。(2)选择有效的设备运行算法。合适设备主要指算法稳定且设备自身硬件条件能够支撑长期运行,设备内部配置可靠且可以进行稳定的数据传输与测量。
随着大数据技术的发展,各整机厂商纷纷建立大数据中心并开展了风电机组状态监控及故障预警的研究,但国内风电机组故障诊断技术从整体来看,产品分析和诊断功能都较为薄弱,主要问题在于对于整机和零部件的运行机理与失效模式认识尚不够深入,当前以趋势判断和定性分析为主,缺乏定量分析,还不具备整套评估体系及对故障进行准确判断与预警的方法。
2.4开展风电机组状态评价、故障诊断以及经济性运行
我国目前已经面临大批风电机组陆续过保的现状,风电机组可利用率下降、传动系统和叶片等零部件的性能下降和故障造成的停机现象较为严重。国内一些科研机构和整机厂家逐渐开始重视风电机组健康状态诊断技术,并借鉴国外先进经验开展了初步研究,也已开发出一些状态监测产品批量应用到风电场。一些风能利用发达的国家,如丹麦、德国、西班牙等拥有长期共生、紧密合作的风电零部件与整机产业链,并根据大量现场采集的运行数据开展风电机组运行状态评价和全寿命周期评估,将风能资源、风电规划、风电场评估、风电机组设备运行状态与检测结果、风电场运行维护、风电场性能评估等统一考虑,用于开展风电机组状态评价、故障诊断以及经济性运行。
3风力发电机组安全保护技术
3.1分析机组故障诊断
诊断风力发电机组故障时,要结合机组自身复杂结构与特殊运行环境,综合分析相关因素,以此获得准确的故障诊断结果。风力发电机组结构复杂,因而故障诊断难度大。实际工作中对传统诊断技术进行创新,应用新技术与理念,准确诊断各类故障以此为解决故障提供参考。风力发电机组的故障诊断要准确了解各故障本质,综合分析机组电力参数、振动、压力、磨损、形变及温度等特点,有效进行故障诊断工作。
3.2分析热力参数
风力发电机组运行中分析热力参数,即分析机组运行温度与湿度变化以此明确其运行状态。对于风力发电机组而言,内部温度包含发电机、齿轮箱、运动电机及变流器等大部件、机舱及控制柜等内部温度。有效监控风力发电机组内部热力参数,有效监测其运行情况。此外结合机组热力参数变化趋势与反馈结果,准确判断机组故障设备部位,为故障原因分析提供可靠的参考依据。
3.3分析机组运行振动
振动分析应用原理是指将振动传感器安装于机组内齿轮箱、发电机、主轴及机组支架等大部件上,以此准确测量机组大部件振动状态。利用传感器所反馈的振动信号处理并分析,快速而准确地判断机组各部件振动状态,综合分析振动来源及成因,由此判断机组运行是否正常。
5结语
综上所述,风力发电机组可能会因为各种故障检修,降低可利用率、增加检修运维成本。因此,实时、全面及系统化的监测风力发电机组,采取有效的故障诊断方法解决机组运行故障,提高风力发电机组利用率,保障电力企业经济利益与社会效益具有重要的意义。
参考文献:
[1] 孙重亮,谢兵红.基于风力发电系统状态监测和故障诊断技术探究[J].电子测试,2019(17):106-107.