王 超
西北电力设计院有限公司 陕西 西安 710075
摘要:近年来,随着行业信息化建设,自动化技术在各行各业中的应用增多,电力行业的自动化技术以电气自动化技术为核心,将其用于电力系统中,可优化电厂、输配电系统、用电终端的电力运行,发挥电厂机组的效能,提高输配电效率,保障用电终端稳定用电,推动电力行业进一步发展。
关键词:电力系统;自动化技术;应用与发展
引言
随着我国计算机自动化水平的不断完善与发展,我国电力系统中电气工程的自动化也在不断优化与升级。利用智能化技术在电气工程自动化的应用,使我国的电力系统更具优势与竞争力,为行业内的高新技术产业提供发展基础。
1 电气自动化技术及其优势
电气自动化技术是指利用电子技术及信息技术进行电气工程各项操作的优化,包括电路分析、PLC技术、传感器技术及电气控制技术等。在电力系统实践应用中,电力系统覆盖发电、输电、配电等全过程,表现出显著的复杂性、系统性、整体性、技术性特征,应配置先进技术为电力系统运行提供支撑。电力自动化技术的应用,可优化电力生产、供应的各个环节,提高电力系统的稳定性。细化来说,电气自动化技术在电力系统中的应用优势体现在以下三点:(1)加强控制,在电力系统运行中,需发电、输配电等环节协调配合,方可确保用户终端活动稳定可靠的电力供应,电气自动化技术的应用,可实现电力系统的全面、深入监控,加强对电力系统各个环节的设备、参数的控制,结合电力系统出现的异常,进行预警与处理,提高电力系统的实效性及安全性;(2)提高效率,电力自动化技术的应用,可事先模拟电力系统的运行状况,评估电力系统方案的可行性,优化电力系统的设备配置与参数设计,保障电力系统的高效运行,提高效率;(3)便于运维,随着用电需求的增强,电力系统架构、设备越来越复杂,加大了电力系统的运维难度,电力自动化技术可通过先进设备,检测设备运行参数,帮助运维人员迅速定位故障位置,分析故障原因,进而为运维工作提供便利。
2 电力自动化控制系统的具体应用
2.1 系统分析
电力自动化控制系统运行期间,主要应用自动化控制技术,其核心组成分为四部分:一是信息收集系统,二是调节控制系统,三是协调优化系统,四是自动管理系统,实现对电力信息的及相关数据的收集和整理,确保电力自动化控制系统正常运行。
2.1.1 信息收集系统
电力自动化控制系统中,信息收集系统是保证电力信息安全、准确的前提和基础,采用现代化大数据技术和云计算功能,对电力系统运行状态进行实时监测,及时收集系统运行的相关数据信息,最终形成数据参数报告,相关人员根据系统运行信息对系统性能进行检测,保证系统各部分运行情况符合自动化控制技术的基本要求,为系统运行与维护人员提供精准的数据信息,保证电力自动化控制系统正常运行。
2.1.2 调节控制系统
调节和控制作为电力自动化控制系统的两大基础性功能,在工作人员对系统进行检修期间,根据电力系统运行的实际状况,结合电力生产及配电效果,自动生成对系统内部各部分元件及核心零部件的调节和控制机制,为相关人员提供科学决策意见,帮助系统运维人员完成电力系统的检修与维护工作。
2.1.3 协调优化系统
电力系统运行过程中,工作人员通过对电力系统重要组成部分性能的综合分析,实现对系统的整体协调和优化,保证电力自动化控制系统各层次、各分系统之间不产生运行冲突,实现对电能资源的优化配置,提高电力系统运行效果,同时,工作人员充分利用协调优化系统,选取最优的电力运行模式,提高电力企业的生产经营效果,增加企业经济收益。
2.1.4 自动管理系统
自动管理系统是保证电力自动化控制系统正常运行的关键因素,工作人员综合运用多种现代化技术手段,将自动监测技术与自动管理技术相结合,打造自动管理系统,最大限度地节约人力、物力、财力,有效避免电力安全事故的发生,实现对管理资源的科学配置,完成对电能的持续供应,延长电力自动化控制系统的运行时间,改善电力输送环境。
2.2 技术要点
2.2.1 模糊控制技术
电力自动化控制技术中,模糊控制技术是支撑系统运行的基础性技术,在实际应用过程中,由模糊理论衍生而来,系统建设相关技术人员利用智能化技术,充分发挥模糊理论的优势和作用,实现对电力信息及系统运行参数的有效控制。在传统电力系统运行期间,同样采用相应的控制技术,但就其具体应用效果而言,难以发挥出应有的控制作用,要求电力系统相关技术人员要加强对电力系统控制技术的应用,充分提高模糊控制技术的应用效率,保证电力信息的准确性和真实性,通过现代化数据信息技术,对电力信息进行筛选和整理,方便系统运维人员提取和调阅信息。
2.2.2 现场总线控制技术
一般情况下,电力自动化控制系统在运行期间,首要任务是要将收集到的数据进行传输,根据电力输送环境和电能运输现场相关数据进行测量,综合利用电力信息监测设备和自动化仪表装置,实现对电力信息的实时传输,保证其良好的通讯效果。电力系统运行时,对现场总线控制要求与数据通信设备要求不一致,要求电力系统控制人员加强对电力系统的建设工作,满足电力系统对接用户的实际需求。现场总线控制技术应用期间,主要通过智能化仪表进行信息连通,电能转化和运输过程中产生的相关数据信息,技术人员利用自动化设备将数据录入系统,在具体操作时,充分利用FCS系统,相较传统的ACS系统呈现出更加强大的智能化特征,实现对电力控制装置性能的优化,能够精准有效地对故障进行定位,在电力自动化控制系统运行和维护期间应用较为广泛。
2.3 智能技术的应用
在智能电网发展背景下,智能技术在电力系统中的应用越来越广泛,电力企业可将智能技术用于电力系统的设计、管理、运维等多个环节,发挥智能优势,改进传统人工操作面临的效率低、质量差等问题,扩大智能电网的覆盖范围,提高配电网智能化水平。在电力系统设计中,电力企业可引进线性最优技术,在该技术支持下,设计人员可在最优励磁模式下,完成电力系统设备与线路的优化配置。在实际设计中,设计人员可综合评估给定电压、电力系统配置发电机的实际电压等参数,通过PID明确控制电压数值,优化调节电力系统电压及相应的相位转移角,提高电力系统设计效率与质量。在电力系统管理中,电力企业可引进基于智能技术的巡检设备,扩大巡检范围,提高巡检质量,及时发现电力系统的缺陷,为电力系统管理决策提供帮助。例如,在某电力企业的日常巡检中,为巡检人员配置智能巡检眼镜,该眼镜应用了大数据技术、传感器技术与感知交互技术,配置地图导航、自动拍照、数据传输、远程控制与语音识别等功能,巡检人员可利用智能巡检眼镜全面获取电力设备的各项数据,评估作业现场的运行状况,实现电力系统的智能管理。在电力系统运维中,电力企业可在电力系统中引进机器学习技术,结合电力系统设备、器件的常见故障,总结故障相关知识,如故障类型、故障参数、故障位置等,使电力系统具备故障自诊断功能。在电力系统运行期间,故障自诊断功能可使电力系统自动完成参数评估工作,进行故障诊断与预警,并将相关信息传输至控制中心,为电力系统的运维提供参考资料,便于故障的高效排除,减少故障对电力系统供电的影响。
3 结语
电气工程自动化中智能化技术已成为发展的驱动力,诸多领域对相关技术的应用逐渐成熟。通过先进性PLA控制技术与智能化故障诊断技术的研究,直接的推动了电气工程的现代化进程,在一定程度上保证了电气工程自动化的质量、安全性及电气工程智能化技术的标准,从而简化电气工程的操控与加工流程,使项目工程具备更高的稳定性。
参考文献
[1]王艺璇.探讨电力系统电气工程自动化中的智能化技术的运用[J].山东工业技术,2018(9):158-159.
[2]单腾.基于智能技术电气自动化控制及实现分析[J].中国设备工程,2020(7):37-38.
[3]张搏.初探智能化技术在电气工程自动化控制中的应用[J].科技创新导报,2020(3):17-19.