陈新平
重庆建筑工程职业学院 重庆市 400072
摘要:本文介绍了传统NAS-RIF算法的原理,针对NAS-RIF算法对噪声敏感的不足,加入正则化参数,改进了NAS-RIF算法,实验结果证明,与传统的复原算法相比,改进后的算法图像复原效果较好,峰值信噪比和复原后的视觉效果较优,图像细节清楚度有所提高,证明了改进算法的有效性。
关键词:NAS-RIF图像复原算法、偏微分去噪、正则化、峰值信噪比
1 NAS-RIF算法简介
1996年Kundur等提出了一种基于非负值和有限支撑域的递归逆滤波器(NAS-RIF)盲图像复原算法【1】。该算法以原图像的支撑域范围作为图像的复原条件,在一个凸集上进行迭代求解,解的唯一性和收敛性都可以得到保证。因算法结构简单,只需较少的迭代次数便可得到复原图像的结果,故NAS-RIF算法既克服了模拟退火算法计算量大的缺点,又克服了迭代盲反卷积算法收敛性较差的缺点,是一种较优的盲目图像复原算法。但算法中使用具有高通性质的逆滤波器,必然会放大高频噪声,故算法在应用时对噪声的影响较为敏感。
2 NAS-RIF图像复原算法的原理
3 图像复原NAS-RIF算法的改进
一般来说,图像模糊算子是一个低通滤波的过程,而NAS-RIF算法采用的是具有高通性质的滤波器,不可避免地会放大高频噪声,特别在低信噪比的情况下,将导致算法恶化,使图像复原效果变差,为此我们对NAS-RIF算法进行了如下改进.
3.1 偏微分去噪预处理
NAS-RIF算法中采用具有高通性质的逆滤波器,在使用过程中会放大高频噪声,故对信噪声比低的图像复原效果不理想。因此在图像复原之前,对待复原的图像先进行去除噪声的处理,无疑是一种明智的解决方案。鉴于偏微分去噪算法在消除噪声的同时能较好地保持图像的边缘性能,我们首先对图像进行了偏微分去噪预处理。
3.2 正则化代价函数
针对原NAS-RIF算法在进行图像复原时会放大高频噪声的不足,我们在原算法的代价函数中引入正则化项来抑制噪声的放大。为了在复原时能保持图像的细节,我们引入了空间自适应正则化项【4-5】,对复原和平滑加以局部的适应性控制。对图像的平坦区域和边缘区域利用空间加权因子进行不同的处理,在图像的平坦区域加强平滑以减少噪声;在图像的边缘附近则加强复原以保持图像的细节,从而使图像的复原效果得到改善。将代价函数改写为:
3.3 实验结果与分析
为了验证算法的有效性,本文以标准国际图像lena的灰度图像作为原始图像,实验中分别采用大小为13个像素、标准差为9个像素的高斯低通滤波器先对图像进行模糊,再加均值为0,方差为0.02的高斯噪声生成退化图像,相同的高斯模糊加均值为0,方差为0.05的高斯噪声生成退化图像。然后分别用经典的NAS-RIF方法和本文改进后的NAS-RIF的算法进行对比实验。用PSNR等客观指标的比较结果作为衡量算法的参考标准. 实验证明:改进后的算法,效果好于原算法且较稳定。
4. 小结
本章介绍了NAS-RIF算法的基本原理,在深入研究NAS-RIF算法的基础上,针对传统NAS-RIF算法的不足,运用PM去噪预处理和正则化代价函数的方法对其进行了改进,仿真实验证明,相对于原算法,改进后的算法复原的图像,噪声大大减少,细节清楚度有所提高,可较好实现显微图像的复原。
参考文献:
[1] Kundur D, Hatzinakos D. On the global asymptotic stability of the NAS-RIF algorithm for blind image restoration [C]. In: Proc IEEE Int Confon Image Processing, Switzerland, 1996, 73-76
[2] Kundur D.,Hatzinakos D. A novel blind deconvolution scheme for image restoration using recursive filtering [J]. IEEE Trans on Signal. Processing,1998,26 (2):375-390
[3] 陈宝林.最优化理论与算法(第2版) [M].北京:清华大学出版社,2005,176-183
[4] 黄琳,陶纯堪,胡茂海.激光共焦扫描显微镜中的图像复原方法[J].光子学报.2007.36 (4) :642-644
[5] Ming Jiang, Ge Fang, Margaret W. Skinner, Jay T. Rubinstein, Michael W. Vannier. Blind Deblurring of Spiral CT Images [J]. IEEE transactions on medical imaging. 2003. 22 (7):837-845
[6] 薛梅,杨绿溪,邹采荣等.用于二值含噪图像的改NAS-RIF图像自复原算法[J].数据采集与处理,2002,17(2): 156-160
[7] 刘光中.凸分析与极值问题[M].北京:高等教育出版社,1991,127-130