曹释露
(西北民族大学医学院;宁夏银川750002)
糖尿病(Diabetes Mellitus,DM)是一种由于胰岛素分泌不足或胰岛素抵抗引起的以血糖升高为特征的代谢性疾病。据2019年国际糖尿病联盟(International Diabetes Federation,IDF)指出2019年全球约4.63亿糖尿病患者,患病率为9.3%,预计到2045年,糖尿病患者会达到7.002亿,患病率为10.9%[1]。糖尿病肾病(Diabetic Nephropathy,DN)是糖尿病微血管并发症之一,其中30%-40%的糖尿病患者会发生糖尿病肾病,随着疾病的进展进入终末肾脏病(End Stage Renal Disease,ESRD)需要行肾脏替代治疗,致残率非常高[2]。
蛋白尿是DN早期诊断和心血管事件发生的一项重要指标,也是并发心血管疾病死亡的独立危险因素[3]。有研究表明,DN患者蛋白尿的产生是由于肾小球内皮细胞功能障碍所致[4],同时足细胞受损也有可能导致蛋白尿的发生。目前研究表明,糖尿病肾病的发生机制与氧化应激、炎症等密切相关,早在1982年Matkovics教授[5]就在糖尿病中提出氧化应激。 Brownlee[6]在这一基础上提出氧化应激在糖尿病肾病中起着重要的作用,当细胞的氧化还原平衡被打破时,就会发生氧化应激,导致细胞膜和重要的生物分子(如DNA、蛋白质和脂质)受损[7-9]。近年来大量研究进一步证明,氧化应激在糖尿病及其并发症中起着不可或缺的作用[10,11]。然而蛋白尿的产生机制尚不明确,因此本篇文章通过研究氧化应激在糖尿病肾病进展中的作用,探究氧化应激对尿蛋白形成的作用,进而为降低尿蛋白,延缓肾病进展提供新的治疗靶点。
氧化应激与糖尿病血管并发症的发病和进展有关,包括神经病变、视网膜病变、肾病和心血管疾病[12]。当细胞外葡萄糖水平升高时,血管内皮细胞葡萄糖摄取的能力降低[13]。导致内皮细胞内高血糖和高血糖诱导的氧化应激损伤。高血糖诱导的活性氧(Reactive Oxygen Species, ROS)过量产生参与血管内皮功能障碍的主要机制有四种,细胞内晚期糖基化和终末产物(Advanced glycation end products,AGEs)及其受体的增加; 多元醇途径,PKC (Protein Kinase C)激活,己糖胺途径[14]。
首先,细胞内高血糖会抑制GAPDH的活性,GAPDH是一种关键的糖酵解酶。然而,超氧化物歧化酶(Superoxide Dismutase,SOD)可以通过阻止线粒体超氧化物生成来减轻这种抑制[15]。因此,细胞内高血糖可能通过介导ROS的过量产生来降低GADPH活性。GADPH的低活性提高了上游蛋白(糖酵解中间体)的水平,从而导致这四种主要途径的增强[16]。
晚期糖基化终产物是由非酶糖基化反应产生的,在该反应中,蛋白质的氨基被葡萄糖和游离脂肪酸氧化而形成糖基化[17]。高血糖会增强这种非酶反应,提高AGEs的生成,从而促进某些血浆蛋白的结构变化,进而激活AGE受体。AGEs与AGE受体在各种细胞类型(如内皮细胞、平滑肌细胞、巨噬细胞、单核细胞和淋巴细胞)中的结合有助于核苷酸磷酸氧化酶(Nucleotide Phosphate Oxidase,NOX)诱导ROS的产生,从而导致NF-κB的激活[18]。NF-κB的激活通过进一步促进内皮素-1(Endothelin-1)、血管粘附分子-1 (VCAM-1)、细胞间粘附分子-1 (ICAM-1)、血管内皮生长因子(VEGF)、组织因子(TF)、巨噬细胞炎症蛋白-1 (MIP-1)、血栓调节素、IL-1、IL-6、TNF-α等基因的转录,诱导血管内皮细胞的炎症和血栓形成[19]。
此外,高糖通过抑制转录因子缺氧诱导因子-1α (HIF-1α)的激活,降低血管内皮细胞NOS(Endothelial Nitric Oxide Synthase)水平,从而降低一氧化氮(Nitric Oxide,NO)水平,NO是血管功能正常的关键调节因子[20]。因此,NO水平的降低扰乱了内皮功能和血管稳态。
多元醇途径是糖代谢过程中最重要的过程之一,醛糖还原酶通过NADPH将葡萄糖还原为山梨醇[16]。细胞内葡萄糖浓度的增加消耗了大量的NADPH,而NADPH是不断产生还原型谷胱甘肽的必要辅助因子。由于谷胱甘肽在清除活性氧中起着重要的作用,因此谷胱甘肽再生的减少会导致ROS的过量产生,从而引起氧化应激。升高的ROS对很多器官都会造成损害。
PKC是一种丝氨酸苏氨酸蛋白激酶,由15种亚型组成,可磷酸化多种靶蛋白,以调节细胞生长、增殖、衰老和凋亡。PKC的活性可以受到多种元素的调控,如钙离子、磷脂酰丝氨酸,特别是二酰基甘油(Diacylglycerol,DAG),可以激活PKC的9种亚型[21-23]。在糖尿病患者中,高血糖促进了DAG从糖代谢的中间产物磷酸丙糖的从头合成。DAG的增加导致PKC激活的过度增强。高活性的PKC通过抑制糖酵解酶GAPDH来诱导ROS的过量产生,进而增加磷酸丙糖的可用性来产生DAG[24.25]。PKC的激活可导致内皮功能障碍,增加血管通透性,并通过多种机制抑制血管生成,包括激活JNK、ERK1/ 2[26] [109]和NF-κB[27],并通过抑制胰岛素刺激的表达减少NO生成[28,29]。
己糖胺生物合成信号通路(Hexosamine Biosynthesis Signaling Pathway,HBP)通过减少NO的产生和促进某些组织生长因子(TGF-α和TGF-β1)的转录,加重高血糖诱导的糖尿病并发症。最初,谷氨酰胺果糖-6-磷酸氨基转移酶(Glutamine Fructose-6-Phosphate Aminotransferase,GFAT)是这个途径的限速酶,催化果糖-6-磷酸转化为葡萄糖胺-6-磷酸。随后,葡萄糖胺6-磷酸被代谢为尿苷二磷酸-N-乙酰葡糖胺 (UDP-GlcNAc)。高血糖和高游离脂肪酸氧化通过增加果糖6-磷酸的生成来增强HBP。HBP增强会损害内皮功能,因为糖基化抑制了内皮细胞中Akt /eNOS的磷酸化,进而降低NO的产生[30]。因此,抑制HBP可能是治疗糖尿病血管并发症的一个潜在靶点。
综上,氧化应激通过不同途径内皮细胞引起内皮细胞功能障碍。而内皮细胞功能障碍在糖尿病肾病中最主要的临床表现就是蛋白尿的形成。近年来Raquel等[31]教授通过抑制氧化应激减轻体内内皮功能障碍,从而延缓蛋白尿取得了好的结果,因此我们推测,针对糖尿病肾病患者除了使用传统的ACEI、ARB类药物降尿蛋白外,还可以通过检测体内氧化应激水平,抑制氧化应激的表达来减轻尿蛋白的形成,从而延缓肾功能的进展。
参考文献
[1]IDF Diabetes Atlas. 9th Edition, 2019.
[2]Lim A. Diabetic nephropathy e complications and treatment. Int J Nephrol Renovascular Dis. 2014;7:361-381.
[3]Noyes AM, Eckardt K.Microalbuminuria as a risk factor for cardiovascular disease in heatlthy individuals:a case report and review of the literature. Conn Med ,2013,77(7):399-402.
[4]Faulhaber-Walter, R. et al. Podocyte Density and Albuminuria in Aging Diabetic Ins2+/- Mice with or Without Adenosine A1 Receptor Signaling. Int J Nephrol Renovasc Dis 13, 19-26.
[5]Matkovics B, Varga SI, Szabó L, Witas H. The effect ofdiabetes on the activities of the peroxide metabolism enzymes. Horm Metab Res 1982; 14(2): 77–79.
[6]M. Brownlee, The pathobiology of diabetic complications, Diabetes 54 (June (6)) (2005) 1615–1625.
[7]D. Wu, A.I. Cederbaum, Alcohol, oxidative stress, and free radical damage, Alcohol Res. Health (December (27)) (2003) 277–284.
[8]H. Bartsch, J. Nair, Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis, Cancer Detect. Prev. 28 (December (6)) (2004) 385–391.
[9][9]J.R. Speakman, C. Selman, The free‐radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan, Bioessays 33 (April (4)) (2011) 255–259.
[10]F. Prattichizzo, V. De Nigris, E. Mancuso, R. Spiga, A. Giuliani, G. Matacchione, R. Lazzarini, F. Marcheselli, R. Recchioni, R. Testa, L. La Sala, Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages, Redox Biol. (May (15)) (2018) 170–181.
[11]J.L. Rains, S.K. Jain, Oxidative stress, insulin signaling, and diabetes, Free Radic. Biol. Med. 50 (March (5)) (2011) 567–575.
[12]Rurali E, Noris M, Chianca A, Donadelli R, Banterla F, Galbusera M, Gherardi G, Gastoldi S, Parvanova A, Iliev I, Bossi A, Haefliger C, Trevisan R, Remuzzi G, Ruggenenti P; BENEDICT Study Group. ADAMTS13 predicts renal and cardiovascular events in type 2 diabetic patients and response to therapy. Diabetes 2013; 62 (10): 3599–3609.
[13]Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 1993; 42 (1): 80–89.
[14]Zhang, P. et al. Oxidative stress and diabetes: antioxidative strategies. Front Med 14, 583-600.
[15]Nascimento NR, Lessa LM, Kerntopf MR, Sousa CM, Alves RS, Queiroz MG, Price J, Heimark DB, Larner J, Du X, Brownlee M, Gow A, Davis C, Fonteles MC. Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proc Natl Acad Sci USA 2006; 103(1): 218–223.
[16]Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058–1070.
[17]Wautier JL, Schmidt AM. Protein glycation: a firm link to endothelial cell dysfunction. Circ Res 2004; 95(3): 233–238.
[18]White PJ, Arita M, Taguchi R, Kang JX, Marette A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes 2010; 59(12): 3066–3073.
[19]Giannini C, Mohn A, Chiarelli F, Kelnar CJ. Macrovascular angiopathy in children and adolescents with type 1 diabetes. Diabetes Metab Res Rev 2011; 27(5): 436–460.
[20]Gimbrone MA Jr, García-Carde?a G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620–636.
[21]Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010; 106(8): 1319– 1331.
[22]Isakov N. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol 2018; 48: 36–52.
[23]Land M, Rubin CS. A calcium- and diacylglycerol-stimulated protein kinase C (PKC), Caenorhabditis elegans PKC-2, links thermal signals to learned behavior by acting in sensory neurons and intestinal cells. Mol Cell Biol 2017; 37(19): e00192-17.
[24]Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820.
[25]Brinkmann C, Schwinger RH, Brixius K. Physical activity and endothelial dysfunction in type 2 diabetic patients: the role ofnitric oxide and oxidative stress. Wien Med Wochenschr 2011; 161(1112): 305–314 (in German).
[26]Kong L, Shen X, Lin L, Leitges M, Rosario R, Zou YS, Yan SF. PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice. Arterioscler Thromb Vasc Biol 2013; 33(8): 1779–1787.
[27]Pieper GM, Riaz-ul-Haq. Activation of nuclear factor-κBin cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiovasc Pharmacol 1997; 30(4): 528–532.
[28]Ganz MB, Seftel A. Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab 2000; 278(1): E146–E152.
[29]Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation 2000; 101(6): 676–681.
[30]Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by Olinked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 2002; 106(4): 466–472.
[31]Gonzalez-Blazquez, R. et al. Finerenone Attenuates Endothelial Dysfunction and Albuminuria in a Chronic Kidney Disease Model by a Reduction in Oxidative Stress. Front Pharmacol 9, 1131.
[基金项目]西北民族大学科研创新项目(Yxm2020152)
[作者简介]曹释露(1995-),女,籍贯:四川,硕士研究生在读,从事慢性肾脏病研究。
[通讯作者]曹释露 787447486@qq.com