BIM技术在超高层建筑深基坑施工中的应用

发表时间:2021/7/8   来源:《建筑实践》2021年 8期   作者:郭锦泉 孟庆鑫
[导读] 随着现代社会经济的发展,中国城市中出现了越来越多的项目,
        郭锦泉 孟庆鑫
        中国建筑第八工程局有限公司南方公司    广东 深圳   518000
        摘要:随着现代社会经济的发展,中国城市中出现了越来越多的项目,建筑行业也逐渐朝着高层、超高层建筑的方向发展。这类施工项目在一定程度上会受到建筑面积狭窄、周边建筑物复杂等外部因素的影响,这对现场施工组织管理工作的开展提出了更为严格的要求。例如,地铁线路通过该工程可能使深基坑支护结构体系变得更加复杂。因此,工作人员在具体工作过程中必须高度重视和关注深基坑支护结构。BIM技术的高效应用可以明显改善基坑支护系统与地下室主体结构之间的位置关系,有助于增强建筑整体结构的稳定性。此外,管理人员在开展基坑深化设计、基坑绘图等工作时可以积极发挥出BIM技术的优势,不仅可以推动现场施工作业的有序开展,还可以在缩短施工时间的同时提升施工现场的精细化管理程度。
        关键词:BIM技术;超高层建筑;深基坑施工;应用
1BIM技术理论概述
        BIM技术指的是一种以三维数字技术为基础构建的数字模型,工程项目的所有数据和信息都可以被融入模型之中。此模型可以在很大程度上帮助工作人员开展工程项目的规划、施工以及管理等工作,其对于整个建筑项目的全过程都有着非常重要的影响,不但可以在一定程度上提升项目工程的可视化程度,还可以高效提升项目管理的直观性、体系化和全面性。
        相较于其他技术而言,BIM技术主要具有信息集成、工作协同、工作关联等突出优点。首先,从信息集成的层面而言,工作人员利用BIM技术所构建的三维模型和二维平面设计图纸有着本质上的区别。其中三维模型可以全方位呈现各个建筑节点,例如:构件连接形式、空间关系、荷载情况等。工作人员可以通过三维模型来直接获取建筑物的信息和数据,这对于提升项目管理的精确度和管理成效有着关键作用。其次,从工作协同的角度来看,建筑企业通过运用BIM技术可以构建高效的信息交流平台,施工企业、监督机构、设计部门以及业主方都可以通过此平台来开展交流和沟通,这样一来,不仅仅降低了管理成本的投入,而且还提升了管理成效。最后,从工作关联的层面来看。BIM技术的工作内容就是构建三维模型,所以模型中所有的信息和数据都会存在一定的关联性,一旦建筑物施工过程中出现了技术变更,那么模型中的信息数据也会同步变更,有关图纸也不需要重新绘制,这对于降低施工成本、确保建设品质有着非常积极的作用。
2超高层建筑深基坑施工中BIM技术的应用思路
2.1应用BIM技术开展基础造型模拟
        超高层建筑深基坑施工中,针对基础施工,即±0.000以下的施工,应借助BIM技术的可视化、模拟性特征,对基础造型进行深化设计,明确各部位的空间位置关系,并准确掌握各类型基坑的标高、坐标信息,从而为施工定位放线提供有效指导。例如,某超高层建筑工程项目,基坑最深深度高达26.036m,采用AutodeskRevit软件,建立垫层模型,并使其完全满足各部位的规范造型需求,包括独立基础、塔吊基础、柱下墩、集水坑以及人防墙下条基等。同时,在考虑施工放坡的基础上,在软件中对测量点坐标进行预设,模拟各处点位、高程坐标,从而1:1模拟施工现场,将施工点位数据完整地显示出来,并进行重点部位三维出图。借助软件的坐标数据输出,并使用全站仪,为基础造型开挖提供有效的指导。
2.2深基坑开挖中BIM技术的应用
        深基坑开挖中,为保障开挖的精确性,应当对BIM技术进行有效应用,对建筑所在地的相关数据信息进行全面收集,并以此为根据,建立3D模型,从而为深基坑开挖提供有效的数据支持。

在收集相关数据信息的时候,可以应用无人机倾斜摄影测量技术,借助无人机这种机动、易操作、灵活、便捷的航空摄影测量设备,来获取高分辨率、高质量的影像数据,并借助具有高清晰、高精度、大范围等优势的倾斜摄影测量技术来对复杂场景进行全面感知,充分结合数据采集设备的高效性优势以及数据处理流程的专业化优势,来将地貌、地物的位置、外观、高度等属性直观、全面地反映出来。获得详细、准确的航测数据之后,便可以以此为根据,建立3DGIS模型。深基坑施工过程中,借助这一3D模型,便可对开挖土方量进行准确计算,为深基坑开挖提供有效的数据支撑。同时,在深基坑开挖过程中,可以借助3D模型,来对开挖高程进行动态化分析,从而避免欠挖、超挖等问题的出现,保障深基坑开挖的施工质量。
2.3深基坑支护中BIM技术的应用
        深基坑施工中,支撑体系发挥着重要的作用,是不可缺少的重要施工内容。但是,支撑体系通常比较复杂,虽然设计过程中考虑到了结构主体、支撑体系之间的空间位置关系,但一些部位依然会与结构发生碰撞,尤其是在多道内支撑体系中,碰撞问题更为常见。设计过程中,剪力墙与支撑立柱、框架柱与支撑立柱以及楼板与支撑梁之间的关系容易确定,因此很少出现碰撞。但是,结构与支撑体系间的位置关系不易确定,容易发生碰撞,主要包括结构梁与支撑立柱之间的碰撞,框架柱、结构梁与支撑梁之间的碰撞,基础底板坑与支撑立柱之间的位置关系,降板处与支撑立柱之间的位置关系。
        面对上述问题,可以采用BIM技术,对结构与支撑体系进行碰撞模拟。通过在深基坑施工中对BIM技术进行有效应用,可以实现事前可控,从而有效减少实际施工中的风险。例如,某超高层建筑工程项目在深基坑施工中,针对主体结构、深基坑支护体系,采用AutodeskRevit软件开展了碰撞检查模拟,同时联合设计方实施了优化调整,并结合现场实际,制定最佳施工技术方案,准确计算施工费用,实现了对施工风险的有效控制。具体来说,先借助AutodeskRevit软件,构建了深基坑支护BIM模型。再按照竖向、水平两个方向对模型进行拆分,以便于对主体与竖向支撑之间的碰撞关系、主体与水平支撑之间的碰撞关系进行分别检查。
        通过开展碰撞检查模拟,可以将碰撞主体之间的相对关系、管线碰撞的位置等快速查找、显示出来。但是,在复杂、密实的结构实体中,管线碰撞检查方式难以实现。因此,该工程是分别对竖向支撑体系、水平支撑体系开展碰撞检查,根据每个碰撞构件的ID号,来筛选碰撞构件,做出判断,归类标记碰撞情况。在归类标记碰撞情况的过程中,应遵循如下几项原则。
        ①针对会影响主体结构抗震性能、承载力的,应尽量规避碰撞,需及时与设计方联系,对深基坑支护体系进行优化设计、变更;
        ②针对需编写在施工技术方案中的碰撞,如穿板的附加钢筋、穿地下室外墙的防水等,应将碰撞数量、碰撞部位记录下来,作为疑问在图纸会审中提出,并做好记录,以便于后续结算;
        ③针对降板处、基础底板坑与支撑立柱之间的位置关系,如支撑立柱处于坡面上、支撑立柱处于坑底内部等,需及时与设计方联系,对支撑立柱的长细比进行验算,对施工技术方案进行综合考虑。
        结束语
        目前施工单位在进行超高层建筑深基坑施工时,容易受到诸多因素的影响,增加了施工难度。在具体施工中,管理人员要严格要求施工流程,加强BIM技术、无人机测绘技术等现代信息技术的应用,提高工程设计和施工效果。管理者应以施工过程为重点,全面解决施工中的不足之处,这对我国建筑业的发展和人民生活质量的提高具有关键的现实意义。
参考文献:
        [1]苏钢.基于BIM的医院门诊楼项目综合应用研究[D].青岛:青岛理工大学,2018
        [2]杨国东,王民水.倾斜摄影测量技术应用及展望[J].测绘与空间地理信息,2016(25):13-15.
        [3]吕慧娟.无人机倾斜摄影三维建模和应用[J].山西建筑,2018(16):180-181.
       
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: