电力变压器的高压试验与故障处理

发表时间:2021/7/9   来源:《中国电业》2021年3月8期   作者:王雨虹
[导读] 对变压器进行高压试验的初衷就是为了有效检验设备的真实运行状态,验证其可靠性、安全性能,这也是提高电力企业运行安全性、稳定性的最为主要方法手段。
        王雨虹
        国网江西省电力有限公司宜春供电分公司 江西 宜春 336000
        摘要:对变压器进行高压试验的初衷就是为了有效检验设备的真实运行状态,验证其可靠性、安全性能,这也是提高电力企业运行安全性、稳定性的最为主要方法手段。对于供电作业区而言,除了要定期对相关设备进行高压试验外,还要待安装结束、大修之后,对其进行相应的高压试验,精准评估其电气绝缘性能。变压器高压试验过程中,存在较大的风险,并且试验技术含量高的工种,在应用阶段同样蕴含着大量技术要点,倘若对其精髓掌握不足,就难以达到预期试验效果。本文就电力变压器在高压实验阶段,主要对其故障诊断方法进行了深入研究,以期能够更好地促进技术进步。
        关键词:电力变压器;高压试验;故障处理
        1 电力变压器故障的类型
        电力变压器所涉及的领域较广,并且内部构造较为复杂,特别是在设备运营阶段难以对其进行故障诊断。变压器本体可将其分为内、外部两大故障部分。对于内部故障而言,主要是指油箱内各相绕组间的相间短路、匝间短路以及箱体接地等故障;对于外部故障而言,较常见的是在油箱外部出现套管闪路等故障。按照回路类型划分,可将故障类型分为磁路、油路以及电路系统故障类型。按照内部构成组分进行划分,可将其分为铁心、变压器绕组等类型故障。
        从上述的变压器的故障类型划分层次来看,不同类型的变压器故障都会对其内部绝缘性造成损伤,以致影响到自身的安全特性。如变压器内部绝缘减少、内部过热以及放电等故障表象较为常见。务必要对变压器故障类型进行分类描述的基础上,深入探讨较为常见的故障类型,提出相应的防护措施,为其提供坚实保障。
        2 电力变压器故障诊断方法分析
        检测电力变压器故障隐患,较为常见的就是变压器故障诊断技术,而最为常用的诊断方法主要以例行、交接以及诊断性施压为主。通过对比分析历年数据样本,基于110k V变压器试验进行综合分析,具体内容如下。
        2.1 绕组直流电阻测量
        对测量变压器绕组直流电阻的方式,能对绕组便利支路以及焊接质量等情况进行检测验证。在同温度作用条件下,与同类产品的出厂具体参数值相比较,变压器内直流电阻的变化幅度应控制在2%以内。同时也可根据在不同温度条件下来测定实际电阻值的方式进行界定。
        2.2 测量绝缘电阻与泄漏电流及交流耐压试验
        检测变压器总体绝缘现状时,可选取测量对绕组连同套管的绝缘电阻、极化指数以及吸收比来综合衡量,该种模式可以能够详细检测出变压器内部的存在的不足,如内部的绝缘受潮情况等,灵敏性较高。与绕组绝缘电阻相比较,测量泄漏电流的方式灵敏性更胜一筹,并且能够及时甄别出难以察觉的局部缺陷。另外,在检查绝缘强度时,通常会采取破坏性试验来加以验证,主要是通过交流耐压试验方式进行测量,可以详细检测出主绝缘的相关区域存在的缺陷,如绕组主绝缘开裂等现象。
        2.3 局部放电测量
        局部放电,更多的是指受到电压影响作用下,相关电气设备的内部构造中部分位置出现非贯穿性放电现象,该类问题更多的是集中在导体边缘、油膜以及气体间隙等区域。常常由于具备较为繁杂的变压器内部结构,内部较为常见局放的影响因素,尤其是在设计层面不够合理时,现实操作运转阶段多会受到机械振动、优质劣化等因素影响而产生气泡,这就易于产生外施电压,最终导致放电问题产生。同时由于气体难以排出,局部放电现象持续存在,长期将致使绝缘老化严重。

故而,对变压器进行局放试验十分必要,尤其是在新安装的110k V变压器上应如期组织局部放电试验。
        2.4 红外线测试
        通常情况下,红外线测试隶属于在线监测,主要是指变压器在现实操作时所遇到的发热情况,通过红外线测试仪来对其综合观测变压器套管油位。具体操控方式如下:(1)实施一般监测。由于电流作用,检测设备局部、整体发热的缺陷,该种模式对于检测环境要求不高,主要应用在大面积的扫描检测环境中。(2)精确检测。在检测局部电流致热性、电压致热性设备内部不足时,该种模式较为常见,能够精准定位到设备的故障位置。
        2.5 油中溶解气体色谱分析
        变压器发生故障前期,内部结构中通常会析出大量气体,相关研究结果表明:不同类型故障所析出的气体也具有较大差异,而通过分析油质中溶解的气体来判断变压器内部故障较为实用,色谱分析法能够全面检测出溶解的气体。通常情况下,油浸设备的检测主要使用三比值法、特征气体法来加以实现,以精准判断出变压器的具体故障类型与不足,特别是局部电弧放电、局部放电等问题的检查,都可以使用上述方法进行判断。(1)特征气体法。故障临近区域位置的绝缘油分解产生的氢气、乙炔等杂质气体,就是所指的特征气体成分,在判断时可以通过气体含量以及内部成分的确认,来精准判定出故障位置。(2)三比值法。该种方法主要是通过乙烯、、乙炔、乙烷、甲烷以及氢气等5种特征气体内的任意3中气体的含量具体比值,通过选取相应编码的方式,来判断变压器故障性质。在故障操作情形条件下,变压器内油、绝缘裂解所分解的产物形成的温度、浓度之间联系密切,基于此能够判断出其具体的故障类型与状态。
        2.6 绕组频率响应分析
        对于绕组特征图谱测量而言,主要是通过绕组频率响应分析法来加以实现,可使用绕组扫频响应曲线与原始记录之间的差异化对比,以精准判断出变压器绕组的真实情况。因此,主要是判断绕组频响曲线内部所有波谷点、坡峰的频率与幅值是否存在差异性。对于绕组变形而言,更多的是指机械力、电动力和短路电流等方面的作用之下,对于变压器绕组尺寸、形状等方面的改变。器身位移、绕组扭曲等都是较为常见的绕组变形问题,在现实的运行过程中,绕组变形对于系统的稳定性影响重大。基于此,要根据变压器的实际运行情况,对绕组变形进行合理管控,最大限度降低损失。将频响法应用到绕组变形测试时,可以使用正弦信号扫频法来加以甄别,主要是对特定绕组一端接地来引进扫频信号,而通过绕组另一端来及时测量所传递的信号,利用传递函数予以计算。通常情况下,随着频率的变化而相应的传递函数也要进行必要的调整,可将其视为幅频响应,与之相对应的相位变化则被称之为相频响应,上述两者均被称之为绕组的频率响应。此次研究主要通过横向比较法来进行对比分析,主要是基于相同主变、电压等级三相绕组频响曲线,该种模式在应用过程中,主变原始频响曲线则不需被试,就能测试绕组变形,应用较为快捷便利。但相应的劣势也较为显著,例如三相绕组较为常见的变形故障,使得判断难度加大。
        3 结语
        随着社会经济的快速发展,国内电力实业也是乘势发展,在电力系统运行过程中,变压器所扮演的作用也是愈加显著,故障的频发将严重影响到电力系统的可靠性、安全性,加大变压器的高压测试工作,科学分析故障诊断方法的应用十分必要。
        参考文献
        [1]高寅.电力变压器高压试验技术及故障处理[J].科技创新与应用,2014(26):160.
        [2]秦栗.电力变压器高压试验及故障处理[J].电子测试,2013(17):106-108.
        [3]李雅璇.变压器油色谱分析与故障判断[J].电子技术,2020,49(10):170-171.
        [4]黄囤.变压器油色谱分析诊断技术的应用[J].电子技术,2020,49(09):100-101.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: