小学数学高年级应用题的解题指导

发表时间:2021/7/14   来源:《中小学教育》2021年3月8期   作者:苏秀莲 蔡汉升
[导读] 本文主要概述小学数学高年级应用题解题步骤的指导策略,希望能在进一步深化学生解题能力的前提下,让学生形成较好的解题意识,可以养成细心读题,认真审题,耐心答题的好习惯
        苏秀莲  蔡汉升
        福建省南安市三乡小学
        摘要:本文主要概述小学数学高年级应用题解题步骤的指导策略,希望能在进一步深化学生解题能力的前提下,让学生形成较好的解题意识,可以养成细心读题,认真审题,耐心答题的好习惯。
        关键词:小学数学;应用题;解题步骤;教学指导
        我在小学数学教学实践中发现很多学生在解答应用题的时候存在解题困境,究其原因发现学生分析解题的过程中很难把握问题的关键点,甚至部分学生解题的时候仅抓住一个已知内容就开始列算式,最终导致信息不全出现了计算误差。为能更好的提升学生的应用题解题能力,教师先要引导学生读懂题目,然后引导学生找出解决问题的关键点,最后在数量关系的理顺中,分析出算式求解。
        一、高年级解题前期准备步骤
        (一)建立数学模型,形成解题意识
        小学数学知识内容学习期间,为能让学生养成良好的学习习惯,应培养学生的数学思维。但现阶段小学生的抽象思维正处于形成阶段,所以在应用题授课中应适度的开展模型化教学,用以扩宽学的抽象思维能力,强化学生的学习意识。教师应在带领学生分析题目,发现等量关系的过程中建立起具有数学特点的算术模型。
        首先,教师让学生学会标注题干重要信息,当然解读信息的时候学生就已经标注了信息,这里的标注是让学生牢记信息出现的方式、位置和形式,通过记录形成系统化模型,再次碰见同类状况后能迅速做出反应。
        其次,学生在标注完成后能清楚的了解到未知量、已知量、隐含条件、数量关系等要素,再次结合所学的公式、模型等确立关系,在弄清楚数量关系后要将数学模型正确、完整、形象的表达到题目里面。教师选择的题目要具有一定的代表性,能及时、准确的反应题目的信息,并能将实际问题抽象为数学问题,教师更要引导学生从数学应用题中找寻数量关系,建立基本数量联系,并合理利用变量,建立对应的数学模型。
        (二)认真审题,了解题意
        教师可以通过分析学生练习题的完成情况分析学生的问题。很多学生在应用题上出现错误的主要原因便在于没有将题目弄清,在读题的过程中只读懂了其中的一部分内容,并没有将所有的条件和问题进行有效分析,从而在解题的过程中便会由于对题目的已知条件与问题本身的理解不清,而出现很多的错误。学生在读题的过程中,学生不仅需要合格的语言能力做基础,同时还需要将骨干信息与数据从题干当中有效地分析出来。通过对题干的分析,掌握题干当中所提到的具体要求,从而找到正确的思考方式,更加高效地解决题目。
        通过对题目的阅读,可以非常有效地对相关的数据进行了解,心中有数的同时也能更好地解答相关问题。教师在教学工作中对于这一问题很容易忽略。但无论在讲解过程中还是在学生的自主训练过程中,很多问题暴露出来之后进行分析,主要原因都是没有足够的时间让学生进行阅读,从而对题目了解不透彻。教学工作中,教师需要给予学生更多的实践机会,让学生形成自主读题的习惯。教师在以引导学生进行读题时,不仅要将数学问题应用起来,同时还需要类似的材料帮助学生更好地完成训练任务,从而更好地完成他们的任务。
        二、高年级数学解题步骤探究
(一)标好重点,做好备注
        解答应用题的时候,很多学生完成题目的阅读之后便马上开始解答,没有完成关键信息解读的环节,盲目的解答过程会对很多关键信息造成忽略。因此教师要引导学生在阅读的过程中勾画出重点内容,对已知的和未知的问题进行总结。要在动笔解题之前勾画出关键词。


例如解答以下例题:
        [例]南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上.海开出的船每小时行21千米,问经过几小时两船相遇
        [含义]两个运动的物体同时由两地出发相向而行,在途中相遇的问题。[数量关系]相遇时间=总路程+ (甲速+乙速)总路程= (甲速+乙速) X相遇时间[解题思路]简单题目直接套用上述公式,复杂题目变通后再套用公式。解:直接套用公式392+ (28+21) =8 (小时)。
        [例]好马每天走120 千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马
        [含义] 两个运动物体在不同地点同时出发(或者在同一一地点不同时出发,或者在不同地点不同时出发)作相向运动。在后面的行进速度快,在前面的行进速度慢,在一定时间内,后者追上了前者的问题。
        [数量关系]追及时间=追及路程十(快速-慢速)追及路程= (快速-慢速)X追及时间[解题思路]简单题目直接套用上述公式,复杂题目变通后再套用公式。
        解:先求劣马先走了多少千米一75X12=900 (千米)再求好马几天能追上一900+ (120-75) =20 (天)综合算式:75X12+ (120-75) =900+45=20 (天)
        教学过程中,教师对于勾画这一环节往往并不重视。但应用题的解答过程中不仅需要良好的方法,同时还需要学生拥有良好的解题习惯。教师要引导学生学会如何进行勾画,并在这一过程中准确地寻找出关键问题,只有这样才能够更好地帮助学生养成一个良好的思维习惯,才能够从更本上提高学生对应用题的解答能力。学生通过相关内容的了解能更好的勾画出想要的解题关键点,结合关键点进行公式带入,使学生形成较为清晰的写作思路。
(二)理顺关系,做好思路整理
        勾画的过程重在信息的收集,而思考的过程便是对这些信息的加工。循序思考的过程便是一个按照固定顺序进行思考的过程。而“关系”所指代的便是数量间的关系。通过循序思考、寻找关系的方法可以将已知条件充分地利用起来,找出不同主体间的特殊数量关系。
        例如,一艘船在顺水航行的时候8个小时能够航行320千米,水流速度15千米每小时,那么这只船在水流速度不便的情况下如果逆流而行,则需要多长时间才能够走完320千米?
        从题目的已知条件入手进行分析可以知道当船顺水航行时的速度为320÷8,也既是说船速+水速=40,因此船自身的航速为40-15=25,那么当船逆水航行时的实际前进速度便为25-15=10,由此便可以顺利完成题目的解答。
        三、结束语
        总而言之,应用题解题的关键是学生能把握好题目中的关键要素,在了解相关解题要素后遵循解题步骤,按照步骤完成题目。教师应在学生解题期间做好方法引导,让学生养成良好的解题习惯,不断地提升学生的应用题解题能力,用以提升学生的数学思维能力。
        参考文献
        [1]陈永欣,刘新龙.小学高年级数学应用题解答能力的培养浅议[J].新课程导学2019(32):31-32.
        [2]余日敏.小学高年级数学解题技巧探微——以分数、百分数应用题的解题为例[J].数学学习与研究2017(08):130-131.
        [3]张恒智.小学数学高年级应用题解题技巧[J].数学大世界(教师适用)2018(11):48-49.
投稿 打印文章 转寄朋友 留言编辑 收藏文章
  期刊推荐
1/1
转寄给朋友
朋友的昵称:
朋友的邮件地址:
您的昵称:
您的邮件地址:
邮件主题:
推荐理由:

写信给编辑
标题:
内容:
您的昵称:
您的邮件地址: