何宁 吴神栋 楼泽 寿橹迪
浙江菲达环保科技股份有限公司 浙江 诸暨 311800
摘要:近年来,各行各业建设的发展迅速,随着技术的进步,工业领域面临着新的发展契机,热能动力联产系统在工业领域的应用日益普遍。热能动力联产系统具有极高的独立性,多为热力循环方式,要维持系统的高效运转,降低系统运行时的能源消耗,各个工业企业都需要结合自身的发展现状,进行热能动力联产系统的节能优化与改进,降低系统运行时的能源消耗与环境污染,带动工业现代化的发展步伐。
关键词:热能与动力工程;节能技术;方法分析
引言
近年来,在中国工业快速发展的过程中,社会经济得到了大幅提升,但是与此同时带来的环境问题也严重影响了人类的生存环境,因此,受到了社会的广泛关注。在电厂运行的过程中,要积极响应中国大力倡导可持续发展的理念,采用节能降耗措施,提高热能转化率,使其能够变成电能,提高电厂的运行效率,为中国环保事业的发展打下坚实的基础。
1热能动力联产系统运转现状
1.1阶梯型能源的利用
在传统的工业发展领域,热能动力联产系统运行时的理论基础是卡诺定量,在整个运行与转换过程中,由于对燃料化学能品位的利用十分有限,常常存在较大的技术与操作局限。在当前工业现代化的发展过程中,要实现热能动力联产系统的优势,需以传统理论为基础,加强各个品位之间的联系性,使得化学能品位可以与热能、自由能品位紧密联系,在关联品位的理论基础上,化学能可以通过对控制盒的转换联产,来达到集成性机理的目的。相关实践表明,集成性转换与能量品位转换之间存在着紧密的联系,这种联系使得二者在一定条件下能够实现耦合,将动力一侧与化工一侧全面整合。
1.2能源一体化利用
能量一体化利用同样是热能动力联产系统的核心理论,一体化利用主要是通过对能量与CO2的控制来实现的,采用的先污染后治理的理论。在热能动力联产系统的运行过程中,首先通过在热力系统中脱除流程尾部的方式,使得能量能够与CO2控制加以有效实现,达到良好的污染治理效果。能源一体化利用原理下,化学能的阶梯级状态使得CO2能够处于能耗分离状态下,实现了二者的充分融合,大大提升了能量的利用效率,CO2的排放量有所降低,热能动力联产系统运行时具有节能减排效益。
2热能与动力工程概述
热能与动力工程是工程热物理科学中的一个研究方向,它涉及到了计算机技术、力学、机械原理等理论,主要是针对热能生产活动中出现的能量转换现象进行管控与计算分析,以便不断优化此过程,提高能量转化效率,减少能量损耗。与此同时,还要利用动力工程中的相关理论,对动力机械以及内燃机等设备的运行进行科学分析,以提高热能转化为动能的效率,或者其他能量转换为动能的效率,降低能量损耗。从当前中国社会发展形式来看,其发展离不开电力的支持。所谓“电力”,指的是以电能为动力的一种能源,在人类社会中的应用十分广泛。在各大电厂生产运行过程中,要想提高能源转化率,减少能源浪费现象,就需要考虑能量守恒定律,由此可见热能与动力工程的重要性。虽然理论上的能量转化问题较为简单,但在实际操作过程中,有关能量转化守恒问题却十分复杂,只有将热能与动力工程科学合理应用到工业当中,才能够提高电厂运行效率,最终起到节能降耗的作用。
3热能与动力工程中的节能技术
3.1优化工业企业的产业结构
运用热能与动力工程的生产企业产业结构就具有消耗能源的特点,要想在热能与动力工程中实现节能,就要优化生产企业的产业结构,对产业结构的构成进行合理化的调整。
在优化工业企业产业结构的过程中,主要从三个方面进行优化:第一方面就是对工业企业的能源结构进行调整,对生产服务所需要的能源进行规划,将转换能源的机械设备进行及时的更新,老旧的生产设备及时淘汰,引进更多先进的生产方式,保证生产效率和生产质量,第二方面就是在满足人们生产和生活需要的前提下,优化热能与动力工程相关产业的产业结构,进一步提高对不可再生能源的利用率。第三方面就是要引进更为先进的新技术,工业企业引进新的生产技术,可以进一步优化产业结构,不仅可以提高对能源的利用率,还可以提高生产效率,促进企业的发展。
3.2改善调频方式
动力工程运行的前提条件就是热能所提供的物质基础,热能又可以通过动力工程装置的转换而来,因此,可以热能与动力工程的关系紧密,是一种能量互相转化的关系,两者又互相促进运行,共同组成了能源以及能量的动力系统。热能与动力工程为人们的生产和生活提供基础能源,满足社会发展的需要,两者十分重要。但热能与动力工程的运行会造成一定的污染,因此需要改善热能与动力工程的调频方式。改善调频方式能够提高热能与动力工程系统的工作效率,减少能源的浪费,同时也能够减少对于环境的污染,真正实现节能减排,通过一次调频和二次调频的配合,可以提高热能与动力工程系统的稳定性,发挥两次调频的优势,进一步提高能量转化效果。
3.3鼓励运用新型技术
当前热能与动力工程中使用的主要能源还是煤炭、天然气以及石油等不可再生能源,这些不可再生能源的主要来源是大自然,是由大自然所“生产”的能源,随着工业企业的不断发展,这些不可再生能源正在逐渐消失,变得越来越稀有,并且开发使用不可再生能源还会在一定程度上破坏大自然的生态系统。基于此,我国越来越重视新型清洁能源的开发和利用,鼓励使用新型的清洁能源来转化成人们生产和生活需要的能源,新型清洁能源对自然环境的污染较小,而且是可再生的能源,可以有效解决当前能源紧张的现象。因此,热能与动力工程中也应当鼓励运用新型技术,利用新型清洁能源来作为机械能和电能等能源转化的原料,这样不仅可以减少污染,保护自然环境,还能够提高能源的转换率,节省对可再生能源的消耗。
3.4完善锅炉回收处理技术
因为热能与动力工程所使用的能源多为不可再生能源,能源十分珍贵,因此应当加强能源的锅炉回收处理,实现能源的二次利用,已达到节约能源的目标。为了使得能源的二次利用效果更好,就要完善锅炉回收处理技术,具体完善技术的方法分为两个方面,一方面是优化锅炉余热回收处理技术,锅炉在工作的过程中会进行尾气的排放,而尾气排放的温度一般高达200摄氏度,这也表示尾气中含有大量未被使用的热能。因此,要优化锅炉热回收处理技术,做好锅炉尾气余热的回收工作,二次利用尾气热能,提高能源的使用效率。另一方面就是要优化锅炉污水回收二次利用技术,目前我国工业企业的污水处理技术较为落后,一般情况下都是直接进行排放,严重污染水资源,因此,在热能与动力工程技术运用的过程中,一定对锅炉污水回收二次利用技术进行改善,将工业废水合理化利用,减少工业污染,这对工业企业的健康发展也有着重要的意义。
结语
综上所述,从当前中国电厂运行情况来看,要想积极响应中国可持续发展理念,电厂必须从自身生产入手,有效应用节能降耗措施,提高资源利用率,降低能源损耗。在此过程中应用热能与动力工程时,工作人员一定要从经济性、安全性和稳定性等方面对节能损耗工作进行评估,确保节能损耗工作能够有效开展,为提高电厂运行质量与效率打下坚实的基础。
参考文献
[1]于万民.试论热能与动力工程的应用及其对环境的影响[J].现代工业经济和信息化,2019(7):51-52.
[2]王维,邓群英.热能与动力工程在锅炉应用中的问题分析[J].好家长,2017(49):247.
[3]许昱华.新形势下电厂锅炉在热能动力工程中的应用[J].内燃机与配件,2017(10):99-101.
[4]刘鹏.热能与动力工程在锅炉中应用问题的创新探究[J].山东工业技术,2018(16):98.
[5]秦建亭,王涛.新时期热能与动力工程在电厂中的创新分析[J].通讯世界,2017(2):180-181.